PhysLean/HepLean/SpaceTime/LorentzTensor/IndexNotation/Indices/Append.lean
2024-08-13 16:36:42 -04:00

952 lines
34 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Indices.UniqueDualInOther
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Indices.UniqueDual
import HepLean.SpaceTime.LorentzTensor.Basic
/-!
# Appending index lists and consquences thereof.
-/
namespace IndexNotation
namespace IndexList
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
variable (l l2 l3 : IndexList X)
/-!
## Appending index lists.
-/
instance : HAppend (IndexList X) (IndexList X) (IndexList X) where
hAppend := fun l l2 => {val := l.val ++ l2.val}
lemma append_assoc : l ++ l2 ++ l3 = l ++ (l2 ++ l3) := by
apply ext
change l.val ++ l2.val ++ l3.val = l.val ++ (l2.val ++ l3.val)
exact List.append_assoc l.val l2.val l3.val
def appendEquiv {l l2 : IndexList X} : Fin l.length ⊕ Fin l2.length ≃ Fin (l ++ l2).length :=
finSumFinEquiv.trans (Fin.castOrderIso (List.length_append _ _).symm).toEquiv
def appendInl : Fin l.length ↪ Fin (l ++ l2).length where
toFun := appendEquiv ∘ Sum.inl
inj' := by
intro i j h
simp [Function.comp] at h
exact h
def appendInr : Fin l2.length ↪ Fin (l ++ l2).length where
toFun := appendEquiv ∘ Sum.inr
inj' := by
intro i j h
simp [Function.comp] at h
exact h
@[simp]
lemma appendInl_appendEquiv :
(l.appendInl l2).trans appendEquiv.symm.toEmbedding =
{toFun := Sum.inl, inj' := Sum.inl_injective} := by
ext i
simp [appendInl]
@[simp]
lemma appendInr_appendEquiv :
(l.appendInr l2).trans appendEquiv.symm.toEmbedding =
{toFun := Sum.inr, inj' := Sum.inr_injective} := by
ext i
simp [appendInr]
@[simp]
lemma append_val {l l2 : IndexList X} : (l ++ l2).val = l.val ++ l2.val := by
rfl
@[simp]
lemma idMap_append_inl {l l2 : IndexList X} (i : Fin l.length) :
(l ++ l2).idMap (appendEquiv (Sum.inl i)) = l.idMap i := by
simp [appendEquiv, idMap]
rw [List.getElem_append_left]
rfl
@[simp]
lemma idMap_append_inr {l l2 : IndexList X} (i : Fin l2.length) :
(l ++ l2).idMap (appendEquiv (Sum.inr i)) = l2.idMap i := by
simp [appendEquiv, idMap, IndexList.length]
rw [List.getElem_append_right]
simp
omega
omega
@[simp]
lemma colorMap_append_inl {l l2 : IndexList X} (i : Fin l.length) :
(l ++ l2).colorMap (appendEquiv (Sum.inl i)) = l.colorMap i := by
simp [appendEquiv, colorMap, IndexList.length]
rw [List.getElem_append_left]
@[simp]
lemma colorMap_append_inl' :
(l ++ l2).colorMap ∘ appendEquiv ∘ Sum.inl = l.colorMap := by
funext i
simp
@[simp]
lemma colorMap_append_inr {l l2 : IndexList X} (i : Fin l2.length) :
(l ++ l2).colorMap (appendEquiv (Sum.inr i)) = l2.colorMap i := by
simp [appendEquiv, colorMap, IndexList.length]
rw [List.getElem_append_right]
simp
omega
omega
@[simp]
lemma colorMap_append_inr' :
(l ++ l2).colorMap ∘ appendEquiv ∘ Sum.inr = l2.colorMap := by
funext i
simp
/-!
## AreDualInSelf
-/
namespace AreDualInSelf
@[simp]
lemma append_inl_inl : (l ++ l2).AreDualInSelf (appendEquiv (Sum.inl i)) (appendEquiv (Sum.inl j))
↔ l.AreDualInSelf i j := by
simp [AreDualInSelf]
@[simp]
lemma append_inr_inr (l l2 : IndexList X) (i j : Fin l2.length) :
(l ++ l2).AreDualInSelf (appendEquiv (Sum.inr i)) (appendEquiv (Sum.inr j))
↔ l2.AreDualInSelf i j := by
simp [AreDualInSelf]
@[simp]
lemma append_inl_inr (l l2 : IndexList X) (i : Fin l.length) (j : Fin l2.length) :
(l ++ l2).AreDualInSelf (appendEquiv (Sum.inl i)) (appendEquiv (Sum.inr j)) =
l.AreDualInOther l2 i j := by
simp [AreDualInSelf, AreDualInOther]
@[simp]
lemma append_inr_inl (l l2 : IndexList X) (i : Fin l2.length) (j : Fin l.length) :
(l ++ l2).AreDualInSelf (appendEquiv (Sum.inr i)) (appendEquiv (Sum.inl j)) =
l2.AreDualInOther l i j := by
simp [AreDualInSelf, AreDualInOther]
end AreDualInSelf
/-!
## Member withDual append conditions
-/
lemma inl_mem_withDual_append_iff (i : Fin l.length) :
appendEquiv (Sum.inl i) ∈ (l ++ l2).withDual ↔ (i ∈ l.withDual i ∈ l.withDualInOther l2) := by
simp only [mem_withDual_iff_exists, mem_withInDualOther_iff_exists]
refine Iff.intro (fun h => ?_) (fun h => ?_)
· obtain ⟨j, hj⟩ := h
obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k =>
exact Or.inl ⟨k, by simpa using hj⟩
| Sum.inr k =>
exact Or.inr ⟨k, by simpa using hj⟩
· cases' h with h h <;>
obtain ⟨j, hj⟩ := h
· use appendEquiv (Sum.inl j)
simpa using hj
· use appendEquiv (Sum.inr j)
simpa using hj
@[simp]
lemma inl_getDual?_isSome_iff (i : Fin l.length) :
((l ++ l2).getDual? (appendEquiv (Sum.inl i))).isSome ↔
((l.getDual? i).isSome (l.getDualInOther? l2 i).isSome) := by
simpa using l.inl_mem_withDual_append_iff l2 i
@[simp]
lemma inl_getDual?_eq_none_iff (i : Fin l.length) :
(l ++ l2).getDual? (appendEquiv (Sum.inl i)) = none ↔
(l.getDual? i = none ∧ l.getDualInOther? l2 i = none) := by
apply Iff.intro
· intro h
have h1 := (l.inl_getDual?_isSome_iff l2 i).mpr.mt
simp only [not_or, Bool.not_eq_true, Option.not_isSome,
Option.isNone_iff_eq_none, imp_self] at h1
exact h1 h
· intro h
have h1 := (l.inl_getDual?_isSome_iff l2 i).mp.mt
simp only [not_or, Bool.not_eq_true, Option.not_isSome,
Option.isNone_iff_eq_none, imp_self] at h1
exact h1 h
@[simp]
lemma inr_mem_withDual_append_iff (i : Fin l2.length) :
appendEquiv (Sum.inr i) ∈ (l ++ l2).withDual
↔ (i ∈ l2.withDual i ∈ l2.withDualInOther l) := by
simp only [mem_withDual_iff_exists, mem_withInDualOther_iff_exists]
refine Iff.intro (fun h => ?_) (fun h => ?_)
· obtain ⟨j, hj⟩ := h
obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k =>
exact Or.inr ⟨k, by simpa using hj⟩
| Sum.inr k =>
exact Or.inl ⟨k, by simpa using hj⟩
· cases' h with h h <;>
obtain ⟨j, hj⟩ := h
· use appendEquiv (Sum.inr j)
simpa using hj
· use appendEquiv (Sum.inl j)
simpa using hj
@[simp]
lemma inr_getDual?_isSome_iff (i : Fin l2.length) :
((l ++ l2).getDual? (appendEquiv (Sum.inr i))).isSome ↔
((l2.getDual? i).isSome (l2.getDualInOther? l i).isSome) := by
simpa using l.inr_mem_withDual_append_iff l2 i
@[simp]
lemma inr_getDual?_eq_none_iff (i : Fin l2.length) :
(l ++ l2).getDual? (appendEquiv (Sum.inr i)) = none ↔
(l2.getDual? i = none ∧ l2.getDualInOther? l i = none) := by
apply Iff.intro
· intro h
have h1 := (l.inr_getDual?_isSome_iff l2 i).mpr.mt
simp only [not_or, Bool.not_eq_true, Option.not_isSome,
Option.isNone_iff_eq_none, imp_self] at h1
exact h1 h
· intro h
have h1 := (l.inr_getDual?_isSome_iff l2 i).mp.mt
simp only [not_or, Bool.not_eq_true, Option.not_isSome,
Option.isNone_iff_eq_none, imp_self] at h1
exact h1 h
lemma append_getDual?_isSome_symm (i : Fin l.length) :
((l ++ l2).getDual? (appendEquiv (Sum.inl i))).isSome ↔
((l2 ++ l).getDual? (appendEquiv (Sum.inr i))).isSome := by
simp
@[simp]
lemma getDual?_inl_of_getDual?_isSome (i : Fin l.length) (h : (l.getDual? i).isSome) :
(l ++ l2).getDual? (appendEquiv (Sum.inl i)) =
some (appendEquiv (Sum.inl ((l.getDual? i).get h))) := by
rw [getDual?, Fin.find_eq_some_iff, AreDualInSelf.append_inl_inl]
apply And.intro (getDual?_get_areDualInSelf l i h).symm
intro j hj
obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k =>
simp only [appendEquiv, Equiv.trans_apply, finSumFinEquiv_apply_left, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, ge_iff_le]
rw [Fin.le_def]
have h2 : l.getDual? i = some (((l.getDual? i).get h)) := by simp
nth_rewrite 1 [getDual?] at h2
rw [Fin.find_eq_some_iff] at h2
exact h2.2 k (by simpa using hj)
| Sum.inr k =>
simp only [appendEquiv, Equiv.trans_apply, finSumFinEquiv_apply_left, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, finSumFinEquiv_apply_right, ge_iff_le]
rw [Fin.le_def]
simp only [length, append_val, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.coe_cast,
Fin.coe_castAdd, Fin.coe_natAdd]
omega
@[simp]
lemma getDual?_inl_of_getDual?_isNone_getDualInOther?_isSome (i : Fin l.length)
(hi : (l.getDual? i).isNone) (h : (l.getDualInOther? l2 i).isSome) :
(l ++ l2).getDual? (appendEquiv (Sum.inl i)) = some
(appendEquiv (Sum.inr ((l.getDualInOther? l2 i).get h))) := by
rw [getDual?, Fin.find_eq_some_iff, AreDualInSelf.append_inl_inr]
apply And.intro (l.areDualInOther_getDualInOther! l2 ⟨i, by simp_all⟩)
intro j hj
obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k =>
rw [AreDualInSelf.append_inl_inl] at hj
simp only [withDual, getDual?, Finset.mem_filter, Finset.mem_univ, true_and, Bool.not_eq_true,
Option.not_isSome, Option.isNone_iff_eq_none, Fin.find_eq_none_iff] at hi
exact False.elim (hi k hj)
| Sum.inr k =>
simp [appendEquiv]
rw [Fin.le_def]
have h1 : l.getDualInOther? l2 i = some (((l.getDualInOther? l2 i).get h)) := by simp
nth_rewrite 1 [getDualInOther?] at h1
rw [Fin.find_eq_some_iff] at h1
simp only [length, append_val, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.coe_cast,
Fin.coe_natAdd, add_le_add_iff_left, Fin.val_fin_le, ge_iff_le]
refine h1.2 k (by simpa using hj)
lemma getDual?_append_inl (i : Fin l.length) : (l ++ l2).getDual? (appendEquiv (Sum.inl i)) =
Option.or (Option.map (appendEquiv ∘ Sum.inl) (l.getDual? i))
(Option.map (appendEquiv ∘ Sum.inr) (l.getDualInOther? l2 i)) := by
by_cases h : (l.getDual? i).isSome
· simp_all
rw [congrArg (Option.map (appendEquiv ∘ Sum.inl)) (Option.eq_some_of_isSome h)]
rfl
by_cases ho : (l.getDualInOther? l2 i).isSome
· simp_all
rw [congrArg (Option.map (appendEquiv ∘ Sum.inr)) (Option.eq_some_of_isSome ho)]
rfl
simp_all
@[simp]
lemma getDual?_append_inr_getDualInOther?_isSome (i : Fin l2.length)
(h : (l2.getDualInOther? l i).isSome) :
(l ++ l2).getDual? (appendEquiv (Sum.inr i)) =
some (appendEquiv (Sum.inl ((l2.getDualInOther? l i).get h))) := by
rw [getDual?, Fin.find_eq_some_iff, AreDualInSelf.append_inr_inl]
apply And.intro (l2.areDualInOther_getDualInOther! l ⟨i, by simp_all⟩)
intro j hj
obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k =>
simp only [appendEquiv, Equiv.trans_apply, finSumFinEquiv_apply_left, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, ge_iff_le]
rw [Fin.le_def]
have h1 : l2.getDualInOther? l i = some (((l2.getDualInOther? l i).get h)) := by simp
nth_rewrite 1 [getDualInOther?] at h1
rw [Fin.find_eq_some_iff] at h1
simp only [Fin.coe_cast, Fin.coe_natAdd, add_le_add_iff_left, Fin.val_fin_le, ge_iff_le]
refine h1.2 k (by simpa using hj)
| Sum.inr k =>
simp only [appendEquiv, Equiv.trans_apply, finSumFinEquiv_apply_left, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, finSumFinEquiv_apply_right, ge_iff_le]
rw [Fin.le_def]
simp only [length, append_val, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.coe_cast,
Fin.coe_castAdd, Fin.coe_natAdd]
omega
@[simp]
lemma getDual?_inr_getDualInOther?_isNone_getDual?_isSome (i : Fin l2.length)
(h : (l2.getDualInOther? l i).isNone) (hi : (l2.getDual? i).isSome) :
(l ++ l2).getDual? (appendEquiv (Sum.inr i)) = some
(appendEquiv (Sum.inr ((l2.getDual? i).get hi))) := by
rw [getDual?, Fin.find_eq_some_iff, AreDualInSelf.append_inr_inr]
apply And.intro (l2.areDualInSelf_getDual! ⟨i, by simp_all⟩)
intro j hj
obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k =>
simp at hj
simp only [getDualInOther?, Option.isNone_iff_eq_none, Fin.find_eq_none_iff] at h
exact False.elim (h k hj)
| Sum.inr k =>
simp [appendEquiv, IndexList.length]
rw [Fin.le_def]
simp
have h2 : l2.getDual? i = some ((l2.getDual? i).get hi) := by simp
nth_rewrite 1 [getDual?] at h2
rw [Fin.find_eq_some_iff] at h2
simp only [AreDualInSelf.append_inr_inr] at hj
exact h2.2 k hj
lemma getDual?_append_inr (i : Fin l2.length) :
(l ++ l2).getDual? (appendEquiv (Sum.inr i)) =
Option.or (Option.map (appendEquiv ∘ Sum.inl) (l2.getDualInOther? l i))
(Option.map (appendEquiv ∘ Sum.inr) (l2.getDual? i)) := by
by_cases h : (l2.getDualInOther? l i).isSome
· simp_all
rw [congrArg (Option.map (appendEquiv ∘ Sum.inl)) (Option.eq_some_of_isSome h)]
rfl
by_cases ho : (l2.getDual? i).isSome
· simp_all
rw [congrArg (Option.map (appendEquiv ∘ Sum.inr)) (Option.eq_some_of_isSome ho)]
rfl
simp_all
/-!
## Properties of the finite set withDual.
-/
def appendInlWithDual (i : l.withDual) : (l ++ l2).withDual :=
⟨appendEquiv (Sum.inl i), by simp⟩
lemma append_withDual : (l ++ l2).withDual =
(Finset.map (l.appendInl l2) (l.withDual l.withDualInOther l2))
(Finset.map (l.appendInr l2) (l2.withDual l2.withDualInOther l)) := by
ext i
obtain ⟨k, hk⟩ := appendEquiv.surjective i
subst hk
match k with
| Sum.inl k =>
simp
apply Iff.intro
intro h
· apply Or.inl
use k
simp_all [appendInl]
· intro h
cases' h with h h
· obtain ⟨j, hj⟩ := h
simp [appendInl] at hj
have hj2 := hj.2
subst hj2
exact hj.1
· obtain ⟨j, hj⟩ := h
simp [appendInr] at hj
| Sum.inr k =>
simp
apply Iff.intro
intro h
· apply Or.inr
use k
simp_all [appendInr]
· intro h
cases' h with h h
· obtain ⟨j, hj⟩ := h
simp [appendInl] at hj
· obtain ⟨j, hj⟩ := h
simp [appendInr] at hj
have hj2 := hj.2
subst hj2
exact hj.1
lemma append_withDual_disjSum : (l ++ l2).withDual =
Equiv.finsetCongr appendEquiv
((l.withDual l.withDualInOther l2).disjSum
(l2.withDual l2.withDualInOther l)) := by
rw [← Equiv.symm_apply_eq]
simp [append_withDual]
rw [Finset.map_union]
rw [Finset.map_map, Finset.map_map]
ext1 a
cases a with
| inl val => simp
| inr val_1 => simp
/-!
## withUniqueDualInOther append conditions
-/
lemma append_inl_not_mem_withDual_of_withDualInOther (i : Fin l.length)
(h : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual) :
i ∈ l.withDual ↔ ¬ i ∈ l.withDualInOther l2 := by
refine Iff.intro (fun hs => ?_) (fun ho => ?_)
· by_contra ho
obtain ⟨j, hj⟩ := (l.mem_withDual_iff_exists).mp hs
obtain ⟨k, hk⟩ := (l.mem_withInDualOther_iff_exists l2).mp ho
have h1 : appendEquiv (Sum.inl j) = appendEquiv (Sum.inr k) := by
refine (l ++ l2).eq_of_areDualInSelf_withUniqueDual ⟨appendEquiv (Sum.inl i), h⟩ ?_ ?_
simpa using hj
simpa using hk
simp at h1
· have ht : ((l ++ l2).getDual? (appendEquiv (Sum.inl i))).isSome := by simp [h]
simp only [inl_getDual?_isSome_iff] at ht
simp_all
lemma append_inr_not_mem_withDual_of_withDualInOther (i : Fin l2.length)
(h : appendEquiv (Sum.inr i) ∈ (l ++ l2).withUniqueDual) :
i ∈ l2.withDual ↔ ¬ i ∈ l2.withDualInOther l := by
refine Iff.intro (fun hs => ?_) (fun ho => ?_)
· by_contra ho
obtain ⟨j, hj⟩ := (l2.mem_withDual_iff_exists).mp hs
obtain ⟨k, hk⟩ := (l2.mem_withInDualOther_iff_exists l).mp ho
have h1 : appendEquiv (Sum.inr j) = appendEquiv (Sum.inl k) := by
refine (l ++ l2).eq_of_areDualInSelf_withUniqueDual ⟨appendEquiv (Sum.inr i), h⟩ ?_ ?_
simpa using hj
simpa using hk
simp at h1
· have ht : ((l ++ l2).getDual? (appendEquiv (Sum.inr i))).isSome := by simp [h]
simp only [inr_getDual?_isSome_iff] at ht
simp_all
/-!
## getDual? apply symmetry.
-/
lemma getDual?_append_symm_of_withUniqueDual_of_inl (i : Fin l.length) (k : Fin l2.length)
(h : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual) :
(l ++ l2).getDual? (appendEquiv (Sum.inl i)) = some (appendEquiv (Sum.inr k))
↔ (l2 ++ l).getDual? (appendEquiv (Sum.inr i)) = some (appendEquiv (Sum.inl k)) := by
have h := l.append_inl_not_mem_withDual_of_withDualInOther l2 i h
by_cases hs : (l.getDual? i).isSome
<;> by_cases ho : (l.getDualInOther? l2 i).isSome
<;> simp_all [hs, ho]
lemma getDual?_append_symm_of_withUniqueDual_of_inl' (i k : Fin l.length)
(h : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual) :
(l ++ l2).getDual? (appendEquiv (Sum.inl i)) = some (appendEquiv (Sum.inl k))
↔ (l2 ++ l).getDual? (appendEquiv (Sum.inr i)) = some (appendEquiv (Sum.inr k)) := by
have h := l.append_inl_not_mem_withDual_of_withDualInOther l2 i h
by_cases hs : (l.getDual? i).isSome
<;> by_cases ho : (l.getDualInOther? l2 i).isSome
<;> simp_all [hs, ho]
lemma getDual?_append_symm_of_withUniqueDual_of_inr (i : Fin l2.length) (k : Fin l.length)
(h : appendEquiv (Sum.inr i) ∈ (l ++ l2).withUniqueDual) :
(l ++ l2).getDual? (appendEquiv (Sum.inr i)) = some (appendEquiv (Sum.inl k))
↔ (l2 ++ l).getDual? (appendEquiv (Sum.inl i)) = some (appendEquiv (Sum.inr k)) := by
have h := l.append_inr_not_mem_withDual_of_withDualInOther l2 i h
by_cases hs : (l2.getDual? i).isSome
<;> by_cases ho : (l2.getDualInOther? l i).isSome
<;> simp_all [hs, ho]
lemma getDual?_append_symm_of_withUniqueDual_of_inr' (i k : Fin l2.length)
(h : appendEquiv (Sum.inr i) ∈ (l ++ l2).withUniqueDual) :
(l ++ l2).getDual? (appendEquiv (Sum.inr i)) = some (appendEquiv (Sum.inr k))
↔ (l2 ++ l).getDual? (appendEquiv (Sum.inl i)) = some (appendEquiv (Sum.inl k)) := by
have h := l.append_inr_not_mem_withDual_of_withDualInOther l2 i h
by_cases hs : (l2.getDual? i).isSome
<;> by_cases ho : (l2.getDualInOther? l i).isSome
<;> simp_all [hs, ho]
/-!
## mem withUniqueDual symmetry
-/
lemma mem_withUniqueDual_append_symm (i : Fin l.length) :
appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual ↔
appendEquiv (Sum.inr i) ∈ (l2 ++ l).withUniqueDual := by
simp only [withUniqueDual, mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ,
inl_getDual?_isSome_iff, true_and, inr_getDual?_isSome_iff, and_congr_right_iff]
intro h
refine Iff.intro (fun h' j hj => ?_) (fun h' j hj => ?_)
· obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k =>
have hk' := h' (appendEquiv (Sum.inr k))
simp only [AreDualInSelf.append_inl_inr] at hk'
simp only [AreDualInSelf.append_inr_inl] at hj
refine ((l.getDual?_append_symm_of_withUniqueDual_of_inl l2 _ _ ?_).mp (hk' hj).symm).symm
simp_all only [AreDualInSelf.append_inl_inr, imp_self, withUniqueDual,
mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ, inl_getDual?_isSome_iff,
implies_true, and_self, mem_withUniqueDual_isSome, eq_getDual?_get_of_withUniqueDual_iff,
Option.some_get]
| Sum.inr k =>
have hk' := h' (appendEquiv (Sum.inl k))
simp only [AreDualInSelf.append_inl_inl] at hk'
simp only [AreDualInSelf.append_inr_inr] at hj
refine ((l.getDual?_append_symm_of_withUniqueDual_of_inl' l2 _ _ ?_).mp (hk' hj).symm).symm
simp_all only [AreDualInSelf.append_inl_inr, imp_self, withUniqueDual,
mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ, inl_getDual?_isSome_iff,
implies_true, and_self, mem_withUniqueDual_isSome, eq_getDual?_get_of_withUniqueDual_iff,
Option.some_get]
· obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k =>
have hk' := h' (appendEquiv (Sum.inr k))
simp only [AreDualInSelf.append_inr_inr] at hk'
simp only [AreDualInSelf.append_inl_inl] at hj
refine ((l2.getDual?_append_symm_of_withUniqueDual_of_inr' l _ _ ?_).mp (hk' hj).symm).symm
simp_all only [AreDualInSelf.append_inr_inr, imp_self, withUniqueDual,
mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ, inr_getDual?_isSome_iff,
implies_true, and_self, mem_withUniqueDual_isSome, eq_getDual?_get_of_withUniqueDual_iff,
Option.some_get]
| Sum.inr k =>
have hk' := h' (appendEquiv (Sum.inl k))
simp only [AreDualInSelf.append_inr_inl] at hk'
simp only [AreDualInSelf.append_inl_inr] at hj
refine ((l2.getDual?_append_symm_of_withUniqueDual_of_inr l _ _ ?_).mp (hk' hj).symm).symm
simp_all only [AreDualInSelf.append_inr_inr, imp_self, withUniqueDual,
mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ, inr_getDual?_isSome_iff,
implies_true, and_self, mem_withUniqueDual_isSome, eq_getDual?_get_of_withUniqueDual_iff,
Option.some_get]
@[simp]
lemma not_mem_withDualInOther_of_inl_mem_withUniqueDual (i : Fin l.length)
(h : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual) (hs : i ∈ l.withUniqueDual) :
¬ i ∈ l.withUniqueDualInOther l2 := by
have hn := l.append_inl_not_mem_withDual_of_withDualInOther l2 i h
simp_all
by_contra ho
have ho' : (l.getDualInOther? l2 i).isSome := by
simp [ho]
simp_all [Option.isSome_none, Bool.false_eq_true]
@[simp]
lemma not_mem_withUniqueDual_of_inl_mem_withUnqieuDual (i : Fin l.length)
(h : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual) (hi : i ∈ l.withUniqueDualInOther l2) :
¬ i ∈ l.withUniqueDual := by
have hn := l.append_inl_not_mem_withDual_of_withDualInOther l2 i h
simp_all
by_contra hs
simp_all [Option.isSome_none, Bool.false_eq_true]
@[simp]
lemma mem_withUniqueDual_of_inl (i : Fin l.length)
(h : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual) (hi : (l.getDual? i).isSome) :
i ∈ l.withUniqueDual := by
simp only [withUniqueDual, mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ,
inl_getDual?_isSome_iff, true_and] at h ⊢
apply And.intro hi
intro j hj
have hj' := h.2 (appendEquiv (Sum.inl j))
simp at hj'
simp_all
@[simp]
lemma mem_withUniqueDualInOther_of_inl_withDualInOther (i : Fin l.length)
(h : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual) (hi : (l.getDualInOther? l2 i).isSome) :
i ∈ l.withUniqueDualInOther l2 := by
simp only [withUniqueDualInOther, mem_withDual_iff_isSome, Bool.not_eq_true, Option.not_isSome,
Option.isNone_iff_eq_none, mem_withInDualOther_iff_isSome, Finset.mem_filter, Finset.mem_univ,
true_and]
have hn := l.append_inl_not_mem_withDual_of_withDualInOther l2 i h
simp_all only [mem_withDual_iff_isSome, mem_withInDualOther_iff_isSome, not_true_eq_false,
iff_false, Bool.not_eq_true, Option.not_isSome, Option.isNone_iff_eq_none, true_and]
intro j hj
simp only [withUniqueDual, mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ,
inl_getDual?_isSome_iff, true_and] at h
have hj' := h.2 (appendEquiv (Sum.inr j))
simp only [AreDualInSelf.append_inl_inr] at hj'
simp_all
lemma withUniqueDual_iff_not_withUniqueDualInOther_of_inl_withUniqueDualInOther
(i : Fin l.length) (h : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual) :
i ∈ l.withUniqueDual ↔ ¬ i ∈ l.withUniqueDualInOther l2 := by
by_cases h' : (l.getDual? i).isSome
have hn : i ∈ l.withUniqueDual := mem_withUniqueDual_of_inl l l2 i h h'
simp_all
have hn := l.append_inl_not_mem_withDual_of_withDualInOther l2 i h
simp_all
simp [withUniqueDual]
simp_all
have hx : (l.getDualInOther? l2 i).isSome := by
rw [← @Option.isNone_iff_eq_none] at hn
rw [← @Option.not_isSome] at hn
exact Eq.symm ((fun {a b} => Bool.not_not_eq.mp) fun a => hn (id (Eq.symm a)))
simp_all
lemma append_inl_mem_withUniqueDual_of_withUniqueDual (i : Fin l.length)
(h : i ∈ l.withUniqueDual) (hn : i ∉ l.withDualInOther l2) :
appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual := by
simp [withUniqueDual]
apply And.intro
simp_all
intro j hj
obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k => simp_all
| Sum.inr k =>
simp at hj
refine False.elim (hn ?_)
exact (l.mem_withInDualOther_iff_exists _).mpr ⟨k, hj⟩
lemma append_inl_mem_of_withUniqueDualInOther (i : Fin l.length)
(ho : i ∈ l.withUniqueDualInOther l2) :
appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual := by
simp only [withUniqueDual, mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ,
inl_getDual?_isSome_iff, true_and]
apply And.intro
simp_all only [mem_withUniqueDualInOther_isSome, or_true]
intro j hj
obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
have hs := l.not_mem_withDual_of_withUniqueDualInOther l2 ⟨i, ho⟩
match k with
| Sum.inl k =>
refine False.elim (hs ?_)
simp at hj
exact (l.mem_withDual_iff_exists).mpr ⟨k, hj⟩
| Sum.inr k =>
simp_all
erw [← l.eq_getDualInOther_of_withUniqueDual_iff l2 ⟨i, ho⟩ k]
simpa using hj
@[simp]
lemma append_inl_mem_withUniqueDual_iff (i : Fin l.length) :
appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual ↔
((i ∈ l.withUniqueDual ∧ i ∉ l.withDualInOther l2) ↔ ¬ i ∈ l.withUniqueDualInOther l2) := by
apply Iff.intro
· intro h
apply Iff.intro
· intro hs
exact (l.withUniqueDual_iff_not_withUniqueDualInOther_of_inl_withUniqueDualInOther l2 i
h).mp hs.1
· intro ho
have hs := ((l.withUniqueDual_iff_not_withUniqueDualInOther_of_inl_withUniqueDualInOther l2 i
h).mpr ho)
apply And.intro hs
refine (l.append_inl_not_mem_withDual_of_withDualInOther l2 i h).mp ?_
exact (l.mem_withDual_of_withUniqueDual ⟨i, hs⟩)
· intro h
by_cases ho : i ∈ l.withUniqueDualInOther l2
· exact append_inl_mem_of_withUniqueDualInOther l l2 i ho
· exact append_inl_mem_withUniqueDual_of_withUniqueDual l l2 i (h.mpr ho).1 (h.mpr ho).2
@[simp]
lemma append_inr_mem_withUniqueDual_iff (i : Fin l2.length) :
appendEquiv (Sum.inr i) ∈ (l ++ l2).withUniqueDual ↔
((i ∈ l2.withUniqueDual ∧ i ∉ l2.withDualInOther l) ↔ ¬ i ∈ l2.withUniqueDualInOther l) := by
rw [← mem_withUniqueDual_append_symm]
simp
lemma append_withUniqueDual : (l ++ l2).withUniqueDual =
Finset.map (l.appendInl l2) ((l.withUniqueDual ∩ (l.withDualInOther l2)ᶜ) l.withUniqueDualInOther l2)
Finset.map (l.appendInr l2) ((l2.withUniqueDual ∩ (l2.withDualInOther l)ᶜ) l2.withUniqueDualInOther l) := by
rw [Finset.ext_iff]
intro j
obtain ⟨k, hk⟩ := appendEquiv.surjective j
subst hk
match k with
| Sum.inl k =>
simp only [append_inl_mem_withUniqueDual_iff, Finset.mem_union]
apply Iff.intro
· intro h
apply Or.inl
simp only [Finset.mem_map, Finset.mem_union, Finset.mem_inter, Finset.mem_compl,
mem_withInDualOther_iff_isSome, Bool.not_eq_true, Option.not_isSome,
Option.isNone_iff_eq_none]
use k
simp only [appendInl, Function.Embedding.coeFn_mk, Function.comp_apply, and_true]
by_cases hk : k ∈ l.withUniqueDualInOther l2
simp_all
have hk' := h.mpr hk
simp_all
· intro h
simp at h
cases' h with h h
· obtain ⟨j, hj⟩ := h
have hjk : j = k := by
simp [appendInl] at hj
exact hj.2
subst hjk
have hj1 := hj.1
cases' hj1 with hj1 hj1
· simp_all
by_contra hn
have h' := l.mem_withDualInOther_of_withUniqueDualInOther l2 ⟨j, hn⟩
simp_all only [mem_withInDualOther_iff_isSome, Option.isSome_none, Bool.false_eq_true]
· simp_all only [or_true, true_and, mem_withInDualOther_iff_isSome,
mem_withUniqueDualInOther_isSome, not_true_eq_false, and_false]
· obtain ⟨j, hj⟩ := h
simp [appendInr] at hj
| Sum.inr k =>
simp only [append_inr_mem_withUniqueDual_iff, Finset.mem_union]
apply Iff.intro
· intro h
apply Or.inr
simp
use k
simp [appendInr]
by_cases hk : k ∈ l2.withUniqueDualInOther l
simp_all only [mem_withInDualOther_iff_isSome, mem_withUniqueDualInOther_isSome,
not_true_eq_false, and_false, or_true]
have hk' := h.mpr hk
simp_all only [not_false_eq_true, and_self, mem_withInDualOther_iff_isSome, Bool.not_eq_true,
Option.not_isSome, Option.isNone_iff_eq_none, or_false]
· intro h
simp at h
cases' h with h h
· obtain ⟨j, hj⟩ := h
simp [appendInl] at hj
· obtain ⟨j, hj⟩ := h
have hjk : j = k := by
simp [appendInr] at hj
exact hj.2
subst hjk
have hj1 := hj.1
cases' hj1 with hj1 hj1
· simp_all
by_contra hn
have h' := l2.mem_withDualInOther_of_withUniqueDualInOther l ⟨j, hn⟩
simp_all
· simp_all
lemma append_withUniqueDual_disjSum : (l ++ l2).withUniqueDual =
Equiv.finsetCongr appendEquiv
(((l.withUniqueDual ∩ (l.withDualInOther l2)ᶜ) l.withUniqueDualInOther l2).disjSum
((l2.withUniqueDual ∩ (l2.withDualInOther l)ᶜ) l2.withUniqueDualInOther l)) := by
rw [← Equiv.symm_apply_eq]
simp [append_withUniqueDual]
rw [Finset.map_union]
rw [Finset.map_map, Finset.map_map]
ext1 a
cases a with
| inl val => simp
| inr val_1 => simp
lemma append_withDual_eq_withUniqueDual_iff :
(l ++ l2).withUniqueDual = (l ++ l2).withDual ↔
((l.withUniqueDual ∩ (l.withDualInOther l2)ᶜ) l.withUniqueDualInOther l2)
= l.withDual l.withDualInOther l2
∧ (l2.withUniqueDual ∩ (l2.withDualInOther l)ᶜ) l2.withUniqueDualInOther l
= l2.withDual l2.withDualInOther l := by
rw [append_withUniqueDual_disjSum, append_withDual_disjSum]
simp
have h (s s' : Finset (Fin l.length)) (t t' : Finset (Fin l2.length)) :
s.disjSum t = s'.disjSum t' ↔ s = s' ∧ t = t' := by
simp [Finset.ext_iff]
rw [h]
lemma append_withDual_eq_withUniqueDual_symm :
(l ++ l2).withUniqueDual = (l ++ l2).withDual ↔
(l2 ++ l).withUniqueDual = (l2 ++ l).withDual := by
rw [append_withDual_eq_withUniqueDual_iff, append_withDual_eq_withUniqueDual_iff]
apply Iff.intro
· intro a
simp_all only [and_self]
· intro a
simp_all only [and_self]
@[simp]
lemma append_withDual_eq_withUniqueDual_inl (h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
l.withUniqueDual = l.withDual := by
rw [Finset.ext_iff]
intro i
refine Iff.intro (fun h' => ?_) (fun h' => ?_)
· simp [h']
· have hn : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual := by
rw [h]
simp_all
refine l.mem_withUniqueDual_of_inl l2 i hn ?_
simp_all
@[simp]
lemma append_withDual_eq_withUniqueDual_inr (h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
l2.withUniqueDual = l2.withDual := by
rw [append_withDual_eq_withUniqueDual_symm] at h
exact append_withDual_eq_withUniqueDual_inl l2 l h
@[simp]
lemma append_withDual_eq_withUniqueDual_withUniqueDualInOther_inl
(h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
l.withUniqueDualInOther l2 = l.withDualInOther l2 := by
rw [Finset.ext_iff]
intro i
refine Iff.intro (fun h' => ?_) (fun h' => ?_)
· simp [h']
· have hn : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual := by
rw [h]
simp_all
refine l.mem_withUniqueDualInOther_of_inl_withDualInOther l2 i hn ?_
simp_all
@[simp]
lemma append_withDual_eq_withUniqueDual_withUniqueDualInOther_inr
(h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
l2.withUniqueDualInOther l = l2.withDualInOther l := by
rw [append_withDual_eq_withUniqueDual_symm] at h
exact append_withDual_eq_withUniqueDual_withUniqueDualInOther_inl l2 l h
lemma append_withDual_eq_withUniqueDual_iff' :
(l ++ l2).withUniqueDual = (l ++ l2).withDual ↔
l.withUniqueDual = l.withDual ∧ l2.withUniqueDual = l2.withDual
∧ l.withUniqueDualInOther l2 = l.withDualInOther l2 ∧
l2.withUniqueDualInOther l = l2.withDualInOther l := by
apply Iff.intro
intro h
exact ⟨append_withDual_eq_withUniqueDual_inl l l2 h, append_withDual_eq_withUniqueDual_inr l l2 h,
append_withDual_eq_withUniqueDual_withUniqueDualInOther_inl l l2 h,
append_withDual_eq_withUniqueDual_withUniqueDualInOther_inr l l2 h⟩
intro h
rw [append_withDual_eq_withUniqueDual_iff]
rw [h.1, h.2.1, h.2.2.1, h.2.2.2]
have h1 : l.withDual ∩ (l.withDualInOther l2)ᶜ = l.withDual := by
rw [Finset.inter_eq_left]
rw [Finset.subset_iff]
rw [← h.1, ← h.2.2.1]
intro i hi
simp only [withUniqueDualInOther, mem_withDual_iff_isSome, Bool.not_eq_true, Option.not_isSome,
Option.isNone_iff_eq_none, mem_withInDualOther_iff_isSome, Finset.compl_filter, not_and,
not_forall, Classical.not_imp, Finset.mem_filter, Finset.mem_univ, true_and]
intro hn
simp_all
have h2 : l2.withDual ∩ (l2.withDualInOther l)ᶜ = l2.withDual := by
rw [Finset.inter_eq_left]
rw [Finset.subset_iff]
rw [← h.2.1, ← h.2.2.2]
intro i hi
simp only [withUniqueDualInOther, mem_withDual_iff_isSome, Bool.not_eq_true, Option.not_isSome,
Option.isNone_iff_eq_none, mem_withInDualOther_iff_isSome, Finset.compl_filter, not_and,
not_forall, Classical.not_imp, Finset.mem_filter, Finset.mem_univ, true_and]
intro hn
simp_all
rw [h1, h2]
simp only [and_self]
/-!
## AreDualInOther append conditions
-/
namespace AreDualInOther
variable {l l2 l3 : IndexList X}
@[simp]
lemma append_of_inl (i : Fin l.length) (j : Fin l3.length) :
(l ++ l2).AreDualInOther l3 (appendEquiv (Sum.inl i)) j ↔ l.AreDualInOther l3 i j := by
simp [AreDualInOther]
@[simp]
lemma append_of_inr (i : Fin l2.length) (j : Fin l3.length) :
(l ++ l2).AreDualInOther l3 (appendEquiv (Sum.inr i)) j ↔ l2.AreDualInOther l3 i j := by
simp [AreDualInOther]
@[simp]
lemma of_append_inl (i : Fin l.length) (j : Fin l2.length) :
l.AreDualInOther (l2 ++ l3) i (appendEquiv (Sum.inl j)) ↔ l.AreDualInOther l2 i j := by
simp [AreDualInOther]
@[simp]
lemma of_append_inr (i : Fin l.length) (j : Fin l3.length) :
l.AreDualInOther (l2 ++ l3) i (appendEquiv (Sum.inr j)) ↔ l.AreDualInOther l3 i j := by
simp [AreDualInOther]
end AreDualInOther
/-!
## Append and getDualInOther?
-/
variable (l3 : IndexList X)
@[simp]
lemma getDualInOther?_append_inl (i : Fin l.length) :
(l ++ l2).getDualInOther? l3 (appendEquiv (Sum.inl i)) = l.getDualInOther? l3 i := by
simp [getDualInOther?]
/-!
## append in other
-/
lemma append_withDualInOther_eq :
(l ++ l2).withDualInOther l3 =
Equiv.finsetCongr appendEquiv ((l.withDualInOther l3).disjSum (l2.withDualInOther l3)) := by
rw [Finset.ext_iff]
intro i
simp
sorry
lemma withDualInOther_append_eq :
l.withDualInOther (l2 ++ l3) =
l.withDualInOther l2 l.withDualInOther l3 := by
sorry
end IndexList
end IndexNotation