509 lines
19 KiB
Text
509 lines
19 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Indices.Color
|
||
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Indices.Relations
|
||
import HepLean.SpaceTime.LorentzTensor.Basic
|
||
import HepLean.SpaceTime.LorentzTensor.RisingLowering
|
||
import HepLean.SpaceTime.LorentzTensor.Contraction
|
||
/-!
|
||
|
||
# The structure of a tensor with a string of indices
|
||
|
||
-/
|
||
|
||
/-! TODO: Introduce a way to change an index from e.g. `ᵘ¹` to `ᵘ²`.
|
||
Would be nice to have a tactic that did this automatically. -/
|
||
|
||
namespace TensorStructure
|
||
noncomputable section
|
||
|
||
open TensorColor
|
||
open IndexNotation
|
||
|
||
variable {R : Type} [CommSemiring R] (𝓣 : TensorStructure R)
|
||
|
||
variable {d : ℕ} {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
|
||
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color}
|
||
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν η : 𝓣.Color}
|
||
|
||
variable [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
|
||
|
||
/-- The structure an tensor with a index specification e.g. `ᵘ¹ᵤ₂`. -/
|
||
structure TensorIndex extends ColorIndexList 𝓣.toTensorColor where
|
||
/-- The underlying tensor. -/
|
||
tensor : 𝓣.Tensor toColorIndexList.colorMap'
|
||
|
||
namespace TensorIndex
|
||
|
||
open TensorColor ColorIndexList
|
||
|
||
variable {𝓣 : TensorStructure R} [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
|
||
variable {n m : ℕ} {cn : Fin n → 𝓣.Color} {cm : Fin m → 𝓣.Color}
|
||
|
||
instance : Coe 𝓣.TensorIndex (ColorIndexList 𝓣.toTensorColor) where
|
||
coe T := T.toColorIndexList
|
||
|
||
lemma colormap_mapIso {T₁ T₂ : 𝓣.TensorIndex} (hi : T₁.toColorIndexList = T₂.toColorIndexList) :
|
||
ColorMap.MapIso (Fin.castOrderIso (by simp [IndexList.length, hi])).toEquiv
|
||
T₁.colorMap' T₂.colorMap' := by
|
||
cases T₁; cases T₂
|
||
simp [ColorMap.MapIso]
|
||
simp at hi
|
||
rename_i a b c d
|
||
cases a
|
||
cases c
|
||
rename_i a1 a2 a3 a4 a5 a6
|
||
cases a1
|
||
cases a4
|
||
simp_all
|
||
simp at hi
|
||
subst hi
|
||
rfl
|
||
|
||
lemma ext {T₁ T₂ : 𝓣.TensorIndex} (hi : T₁.toColorIndexList = T₂.toColorIndexList)
|
||
(h : T₁.tensor = 𝓣.mapIso (Fin.castOrderIso (by simp [IndexList.length, hi])).toEquiv
|
||
(colormap_mapIso hi.symm) T₂.tensor) : T₁ = T₂ := by
|
||
cases T₁; cases T₂
|
||
simp at h
|
||
simp_all
|
||
simp at hi
|
||
subst hi
|
||
simp_all
|
||
|
||
|
||
lemma index_eq_of_eq {T₁ T₂ : 𝓣.TensorIndex} (h : T₁ = T₂) :
|
||
T₁.toColorIndexList = T₂.toColorIndexList := by
|
||
cases h
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma tensor_eq_of_eq {T₁ T₂ : 𝓣.TensorIndex} (h : T₁ = T₂) : T₁.tensor =
|
||
𝓣.mapIso (Fin.castOrderIso (by rw [index_eq_of_eq h])).toEquiv
|
||
(colormap_mapIso (index_eq_of_eq h).symm) T₂.tensor := by
|
||
have hi := index_eq_of_eq h
|
||
cases T₁
|
||
cases T₂
|
||
simp at hi
|
||
subst hi
|
||
simpa using h
|
||
|
||
/-- The construction of a `TensorIndex` from a tensor, a IndexListColor, and a condition
|
||
on the dual maps. -/
|
||
def mkDualMap (T : 𝓣.Tensor cn) (l : ColorIndexList 𝓣.toTensorColor) (hn : n = l.1.length)
|
||
(hd : ColorMap.DualMap l.colorMap' (cn ∘ Fin.cast hn.symm)) :
|
||
𝓣.TensorIndex where
|
||
toColorIndexList := l
|
||
tensor :=
|
||
𝓣.mapIso (Equiv.refl _) (ColorMap.DualMap.split_dual' (by simpa using hd)) <|
|
||
𝓣.dualize (ColorMap.DualMap.split l.colorMap' (cn ∘ Fin.cast hn.symm)) <|
|
||
(𝓣.mapIso (Fin.castOrderIso hn).toEquiv rfl T : 𝓣.Tensor (cn ∘ Fin.cast hn.symm))
|
||
|
||
/-!
|
||
|
||
## The contraction of indices
|
||
|
||
-/
|
||
|
||
/-- The contraction of indices in a `TensorIndex`. -/
|
||
def contr (T : 𝓣.TensorIndex) : 𝓣.TensorIndex where
|
||
toColorIndexList := T.toColorIndexList.contr
|
||
tensor := 𝓣.mapIso (Equiv.refl _) T.contrEquiv_colorMapIso <|
|
||
𝓣.contr T.toColorIndexList.contrEquiv T.contrEquiv_contrCond T.tensor
|
||
|
||
/-- Applying contr to a tensor whose indices has no contracts does not do anything. -/
|
||
@[simp]
|
||
lemma contr_of_withDual_empty (T : 𝓣.TensorIndex) (h : T.withDual = ∅) :
|
||
T.contr = T := by
|
||
refine ext ?_ ?_
|
||
· simp [contr, ColorIndexList.contr]
|
||
have hx := T.contrIndexList_of_withDual_empty h
|
||
apply ColorIndexList.ext
|
||
simp [hx]
|
||
· simp only [contr]
|
||
cases T
|
||
rename_i i T
|
||
simp only
|
||
refine PiTensorProduct.induction_on' T ?_ (by
|
||
intro a b hx hy
|
||
simp [map_add, add_mul, hx, hy])
|
||
intro r f
|
||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, LinearMapClass.map_smul, mapIso_tprod, id_eq,
|
||
eq_mpr_eq_cast, OrderIso.toEquiv_symm, RelIso.coe_fn_toEquiv]
|
||
apply congrArg
|
||
have hEm : IsEmpty { x // x ∈ i.withUniqueDualLT } := by
|
||
rw [Finset.isEmpty_coe_sort]
|
||
rw [Finset.eq_empty_iff_forall_not_mem]
|
||
intro x hx
|
||
have hx' : x ∈ i.withUniqueDual := by
|
||
exact Finset.mem_of_mem_filter x hx
|
||
rw [i.unique_duals] at h
|
||
rw [h] at hx'
|
||
simp_all
|
||
erw [TensorStructure.contr_tprod_isEmpty]
|
||
erw [mapIso_tprod]
|
||
simp only [Equiv.refl_symm, Equiv.refl_apply, colorMap', mapIso_tprod, id_eq,
|
||
OrderIso.toEquiv_symm, RelIso.coe_fn_toEquiv]
|
||
apply congrArg
|
||
funext l
|
||
rw [← LinearEquiv.symm_apply_eq]
|
||
simp only [colorModuleCast, Equiv.cast_symm, OrderIso.toEquiv_symm, RelIso.coe_fn_toEquiv,
|
||
Function.comp_apply, LinearEquiv.coe_mk, Equiv.cast_apply, LinearEquiv.coe_symm_mk, cast_cast]
|
||
apply cast_eq_iff_heq.mpr
|
||
let hl := i.contrEquiv_on_withDual_empty l h
|
||
exact let_value_heq f hl
|
||
|
||
@[simp]
|
||
lemma contr_contr (T : 𝓣.TensorIndex) : T.contr.contr = T.contr :=
|
||
T.contr.contr_of_withDual_empty (by simp [contr, ColorIndexList.contr])
|
||
|
||
@[simp]
|
||
lemma contr_toColorIndexList (T : 𝓣.TensorIndex) : T.contr.toColorIndexList = T.toColorIndexList.contr := rfl
|
||
|
||
@[simp]
|
||
lemma contr_toIndexList (T : 𝓣.TensorIndex) : T.contr.toIndexList = T.toIndexList.contrIndexList := rfl
|
||
/-!
|
||
|
||
## Scalar multiplication of
|
||
|
||
-/
|
||
|
||
/-- The scalar multiplication of a `TensorIndex` by an element of `R`. -/
|
||
instance : SMul R 𝓣.TensorIndex where
|
||
smul := fun r T => {
|
||
toColorIndexList := T.toColorIndexList
|
||
tensor := r • T.tensor}
|
||
|
||
@[simp]
|
||
lemma smul_index (r : R) (T : 𝓣.TensorIndex) : (r • T).toColorIndexList = T.toColorIndexList := rfl
|
||
|
||
@[simp]
|
||
lemma smul_tensor (r : R) (T : 𝓣.TensorIndex) : (r • T).tensor = r • T.tensor := rfl
|
||
|
||
@[simp]
|
||
lemma smul_contr (r : R) (T : 𝓣.TensorIndex) : (r • T).contr = r • T.contr := by
|
||
refine ext rfl ?_
|
||
simp only [contr, smul_index, smul_tensor, LinearMapClass.map_smul, Fin.castOrderIso_refl,
|
||
OrderIso.refl_toEquiv, mapIso_refl, LinearEquiv.refl_apply]
|
||
|
||
/-!
|
||
|
||
## Equivalence relation on `TensorIndex`
|
||
|
||
-/
|
||
|
||
|
||
|
||
/-- An (equivalence) relation on two `TensorIndex`.
|
||
The point in this equivalence relation is that certain things (like the
|
||
permutation of indices, the contraction of indices, or rising or lowering indices) can be placed
|
||
in the indices or moved to the tensor itself. These two descriptions are equivalent. -/
|
||
def Rel (T₁ T₂ : 𝓣.TensorIndex) : Prop :=
|
||
T₁.ContrPerm T₂ ∧ ∀ (h : T₁.ContrPerm T₂),
|
||
T₁.contr.tensor = 𝓣.mapIso (contrPermEquiv h).symm (contrPermEquiv_colorMap_iso h) T₂.contr.tensor
|
||
|
||
namespace Rel
|
||
|
||
/-- Rel is reflexive. -/
|
||
lemma refl (T : 𝓣.TensorIndex) : Rel T T := by
|
||
apply And.intro
|
||
simp
|
||
simp
|
||
|
||
/-- Rel is symmetric. -/
|
||
lemma symm {T₁ T₂ : 𝓣.TensorIndex} (h : Rel T₁ T₂) : Rel T₂ T₁ := by
|
||
apply And.intro h.1.symm
|
||
intro h'
|
||
rw [← mapIso_symm]
|
||
symm
|
||
erw [LinearEquiv.symm_apply_eq]
|
||
rw [h.2]
|
||
apply congrFun
|
||
congr
|
||
exact h'.symm
|
||
|
||
/-- Rel is transitive. -/
|
||
lemma trans {T₁ T₂ T₃ : 𝓣.TensorIndex} (h1 : Rel T₁ T₂) (h2 : Rel T₂ T₃) : Rel T₁ T₃ := by
|
||
apply And.intro ((h1.1.trans h2.1))
|
||
intro h
|
||
change _ = (𝓣.mapIso (contrPermEquiv (h1.1.trans h2.1)).symm _) T₃.contr.tensor
|
||
trans (𝓣.mapIso ((contrPermEquiv h1.1).trans (contrPermEquiv h2.1)).symm (by
|
||
simp
|
||
have h1 := contrPermEquiv_colorMap_iso (ContrPerm.symm (ContrPerm.trans h1.left h2.left))
|
||
rw [← ColorMap.MapIso.symm'] at h1
|
||
exact h1)) T₃.contr.tensor
|
||
swap
|
||
congr 1
|
||
simp only [contrPermEquiv_trans, contrPermEquiv_symm]
|
||
erw [← mapIso_trans]
|
||
simp only [LinearEquiv.trans_apply]
|
||
apply (h1.2 h1.1).trans
|
||
apply congrArg
|
||
exact h2.2 h2.1
|
||
|
||
/-- Rel forms an equivalence relation. -/
|
||
lemma isEquivalence : Equivalence (@Rel _ _ 𝓣 _) where
|
||
refl := Rel.refl
|
||
symm := Rel.symm
|
||
trans := Rel.trans
|
||
|
||
/-- The equality of tensors corresponding to related tensor indices. -/
|
||
lemma to_eq {T₁ T₂ : 𝓣.TensorIndex} (h : Rel T₁ T₂) :
|
||
T₁.contr.tensor = 𝓣.mapIso (contrPermEquiv h.1).symm (contrPermEquiv_colorMap_iso h.1) T₂.contr.tensor := h.2 h.1
|
||
|
||
end Rel
|
||
|
||
/-- The structure of a Setoid on `𝓣.TensorIndex` induced by `Rel`. -/
|
||
instance asSetoid : Setoid 𝓣.TensorIndex := ⟨Rel, Rel.isEquivalence⟩
|
||
|
||
/-- A tensor index is equivalent to its contraction. -/
|
||
lemma rel_contr (T : 𝓣.TensorIndex) : T ≈ T.contr := by
|
||
apply And.intro
|
||
simp
|
||
intro h
|
||
rw [tensor_eq_of_eq T.contr_contr]
|
||
simp only [contr_toColorIndexList, colorMap', contrPermEquiv_self_contr, OrderIso.toEquiv_symm,
|
||
Fin.symm_castOrderIso, mapIso_mapIso]
|
||
trans 𝓣.mapIso (Equiv.refl _) (by rfl) T.contr.tensor
|
||
simp only [contr_toColorIndexList, mapIso_refl, LinearEquiv.refl_apply]
|
||
rfl
|
||
|
||
lemma smul_equiv {T₁ T₂ : 𝓣.TensorIndex} (h : T₁ ≈ T₂) (r : R) : r • T₁ ≈ r • T₂ := by
|
||
apply And.intro h.1
|
||
intro h1
|
||
rw [tensor_eq_of_eq (smul_contr r T₁), tensor_eq_of_eq (smul_contr r T₂)]
|
||
simp only [contr_toColorIndexList, smul_index, Fin.castOrderIso_refl, OrderIso.refl_toEquiv,
|
||
mapIso_refl, smul_tensor, map_smul, LinearEquiv.refl_apply, contrPermEquiv_symm]
|
||
apply congrArg
|
||
exact h.2 h1
|
||
|
||
/-!
|
||
|
||
## Addition of allowed `TensorIndex`
|
||
|
||
-/
|
||
|
||
/-- The condition on tensors with indices for their addition to exists.
|
||
This condition states that the the indices of one tensor are exact permutations of indices
|
||
of another after contraction. This includes the id of the index and the color.
|
||
|
||
This condition is general enough to allow addition of e.g. `ψᵤ₁ᵤ₂ + φᵤ₂ᵤ₁`, but
|
||
will NOT allow e.g. `ψᵤ₁ᵤ₂ + φᵘ²ᵤ₁`. -/
|
||
def AddCond (T₁ T₂ : 𝓣.TensorIndex) : Prop := T₁.ContrPerm T₂
|
||
|
||
namespace AddCond
|
||
|
||
lemma to_PermContr {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) :
|
||
T₁.toColorIndexList.ContrPerm T₂.toColorIndexList := h
|
||
|
||
@[symm]
|
||
lemma symm {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) : AddCond T₂ T₁ := by
|
||
rw [AddCond] at h
|
||
exact h.symm
|
||
|
||
lemma refl (T : 𝓣.TensorIndex) : AddCond T T := ContrPerm.refl
|
||
|
||
lemma trans {T₁ T₂ T₃ : 𝓣.TensorIndex} (h1 : AddCond T₁ T₂) (h2 : AddCond T₂ T₃) :
|
||
AddCond T₁ T₃ := by
|
||
rw [AddCond] at h1 h2
|
||
exact h1.trans h2
|
||
|
||
lemma rel_left {T₁ T₁' T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : T₁ ≈ T₁') :
|
||
AddCond T₁' T₂ := h'.1.symm.trans h
|
||
|
||
lemma rel_right {T₁ T₂ T₂' : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : T₂ ≈ T₂') :
|
||
AddCond T₁ T₂' := h.trans h'.1
|
||
|
||
|
||
end AddCond
|
||
|
||
|
||
/-- The equivalence between indices after contraction given a `AddCond`. -/
|
||
@[simp]
|
||
def addCondEquiv {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) :
|
||
Fin T₁.contr.length ≃ Fin T₂.contr.length := contrPermEquiv h
|
||
|
||
lemma addCondEquiv_colorMap {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) :
|
||
ColorMap.MapIso (addCondEquiv h) T₁.contr.colorMap' T₂.contr.colorMap' :=
|
||
contrPermEquiv_colorMap_iso' h
|
||
|
||
/-- The addition of two `TensorIndex` given the condition that, after contraction,
|
||
their index lists are the same. -/
|
||
def add (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
|
||
𝓣.TensorIndex where
|
||
toColorIndexList := T₂.toColorIndexList.contr
|
||
tensor := (𝓣.mapIso (addCondEquiv h) (addCondEquiv_colorMap h) T₁.contr.tensor) + T₂.contr.tensor
|
||
|
||
/-- Notation for addition of tensor indices. -/
|
||
notation:71 T₁ "+["h"]" T₂:72 => add T₁ T₂ h
|
||
|
||
namespace AddCond
|
||
|
||
lemma add_right {T₁ T₂ T₃ : 𝓣.TensorIndex} (h : AddCond T₁ T₃) (h' : AddCond T₂ T₃) :
|
||
AddCond T₁ (T₂ +[h'] T₃) := by
|
||
simpa only [AddCond, add] using h.rel_right T₃.rel_contr
|
||
|
||
lemma add_left {T₁ T₂ T₃ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : AddCond T₂ T₃) :
|
||
AddCond (T₁ +[h] T₂) T₃ :=
|
||
(add_right h'.symm h).symm
|
||
|
||
lemma of_add_right' {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₂ T₃} (h : AddCond T₁ (T₂ +[h'] T₃)) :
|
||
AddCond T₁ T₃ := by
|
||
change T₁.AddCond T₃.contr at h
|
||
exact h.rel_right T₃.rel_contr.symm
|
||
|
||
lemma of_add_right {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₂ T₃} (h : AddCond T₁ (T₂ +[h'] T₃)) :
|
||
AddCond T₁ T₂ := h.of_add_right'.trans h'.symm
|
||
|
||
lemma of_add_left {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ T₂}
|
||
(h : AddCond (T₁ +[h'] T₂) T₃) : AddCond T₂ T₃ :=
|
||
(of_add_right' h.symm).symm
|
||
|
||
lemma of_add_left' {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ T₂}
|
||
(h : AddCond (T₁ +[h'] T₂) T₃) : AddCond T₁ T₃ :=
|
||
(of_add_right h.symm).symm
|
||
|
||
lemma add_left_of_add_right {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₂ T₃}
|
||
(h : AddCond T₁ (T₂ +[h'] T₃)) : AddCond (T₁ +[of_add_right h] T₂) T₃ := by
|
||
have h0 := ((of_add_right' h).trans h'.symm)
|
||
exact (h'.symm.add_right h0).symm
|
||
|
||
lemma add_right_of_add_left {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ T₂}
|
||
(h : AddCond (T₁ +[h'] T₂) T₃) : AddCond T₁ (T₂ +[of_add_left h] T₃) :=
|
||
(add_left (of_add_left h) (of_add_left' h).symm).symm
|
||
|
||
lemma add_comm {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) :
|
||
AddCond (T₁ +[h] T₂) (T₂ +[h.symm] T₁) := by
|
||
apply add_right
|
||
apply add_left
|
||
exact h.symm
|
||
|
||
end AddCond
|
||
|
||
@[simp]
|
||
lemma add_toColorIndexList (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
|
||
(add T₁ T₂ h).toColorIndexList = T₂.toColorIndexList.contr := rfl
|
||
|
||
@[simp]
|
||
lemma add_tensor (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
|
||
(add T₁ T₂ h).tensor =
|
||
(𝓣.mapIso (addCondEquiv h) (addCondEquiv_colorMap h) T₁.contr.tensor) + T₂.contr.tensor := by rfl
|
||
|
||
/-- Scalar multiplication commutes with addition. -/
|
||
lemma smul_add (r : R) (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
|
||
r • (T₁ +[h] T₂) = r • T₁ +[h] r • T₂ := by
|
||
refine ext rfl ?_
|
||
simp [add]
|
||
rw [tensor_eq_of_eq (smul_contr r T₁), tensor_eq_of_eq (smul_contr r T₂)]
|
||
simp only [smul_index, contr_toColorIndexList, Fin.castOrderIso_refl, OrderIso.refl_toEquiv,
|
||
mapIso_refl, smul_tensor, map_smul, LinearEquiv.refl_apply]
|
||
|
||
lemma add_withDual_empty (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
|
||
(T₁ +[h] T₂).withDual = ∅ := by
|
||
simp [contr]
|
||
change T₂.toColorIndexList.contr.withDual = ∅
|
||
simp [ColorIndexList.contr]
|
||
|
||
@[simp]
|
||
lemma contr_add (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
|
||
(T₁ +[h] T₂).contr = T₁ +[h] T₂ :=
|
||
contr_of_withDual_empty (T₁ +[h] T₂) (add_withDual_empty T₁ T₂ h)
|
||
|
||
@[simp]
|
||
lemma contr_add_tensor (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
|
||
(T₁ +[h] T₂).contr.tensor =
|
||
𝓣.mapIso (Fin.castOrderIso (by rw [index_eq_of_eq (contr_add T₁ T₂ h)])).toEquiv
|
||
(colormap_mapIso (by simp)) (T₁ +[h] T₂).tensor :=
|
||
tensor_eq_of_eq (contr_add T₁ T₂ h)
|
||
|
||
lemma add_comm {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) : T₁ +[h] T₂ ≈ T₂ +[h.symm] T₁ := by
|
||
apply And.intro h.add_comm
|
||
intro h
|
||
simp only [contr_toColorIndexList, add_toColorIndexList, contr_add_tensor, add_tensor,
|
||
addCondEquiv, map_add, mapIso_mapIso, colorMap', contrPermEquiv_symm]
|
||
rw [_root_.add_comm]
|
||
congr 1
|
||
· apply congrFun
|
||
apply congrArg
|
||
congr 1
|
||
rw [← contrPermEquiv_self_contr, ← contrPermEquiv_self_contr, contrPermEquiv_trans,
|
||
contrPermEquiv_trans]
|
||
· apply congrFun
|
||
apply congrArg
|
||
congr 1
|
||
rw [← contrPermEquiv_self_contr, ← contrPermEquiv_self_contr, contrPermEquiv_trans,
|
||
contrPermEquiv_trans]
|
||
|
||
open AddCond in
|
||
lemma add_rel_left {T₁ T₁' T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : T₁ ≈ T₁') :
|
||
T₁ +[h] T₂ ≈ T₁' +[h.rel_left h'] T₂ := by
|
||
apply And.intro ContrPerm.refl
|
||
intro h
|
||
simp only [contr_add_tensor, add_tensor, map_add]
|
||
congr 1
|
||
rw [h'.to_eq]
|
||
simp only [contr_toColorIndexList, add_toColorIndexList, colorMap', addCondEquiv,
|
||
contrPermEquiv_symm, mapIso_mapIso, contrPermEquiv_trans, contrPermEquiv_refl, Equiv.refl_symm,
|
||
mapIso_refl, LinearEquiv.refl_apply]
|
||
simp only [contr_toColorIndexList, add_toColorIndexList, colorMap', contrPermEquiv_refl,
|
||
Equiv.refl_symm, mapIso_refl, LinearEquiv.refl_apply]
|
||
|
||
open AddCond in
|
||
lemma add_rel_right {T₁ T₂ T₂' : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : T₂ ≈ T₂') :
|
||
T₁ +[h] T₂ ≈ T₁ +[h.rel_right h'] T₂' :=
|
||
(add_comm _).trans ((add_rel_left _ h').trans (add_comm _))
|
||
|
||
open AddCond in
|
||
lemma add_assoc' {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₂ T₃} (h : AddCond T₁ (T₂ +[h'] T₃)) :
|
||
T₁ +[h] (T₂ +[h'] T₃) = T₁ +[h'.of_add_right h] T₂ +[h'.add_left_of_add_right h] T₃ := by
|
||
refine ext ?_ ?_
|
||
simp only [add_toColorIndexList, ColorIndexList.contr_contr]
|
||
simp only [add_toColorIndexList, add_tensor, contr_toColorIndexList, addCondEquiv,
|
||
contr_add_tensor, map_add, mapIso_mapIso]
|
||
rw [_root_.add_assoc]
|
||
congr
|
||
rw [← contrPermEquiv_self_contr, ← contrPermEquiv_self_contr]
|
||
rw [contrPermEquiv_trans, contrPermEquiv_trans, contrPermEquiv_trans]
|
||
erw [← contrPermEquiv_self_contr, contrPermEquiv_trans]
|
||
|
||
open AddCond in
|
||
lemma add_assoc {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ T₂} (h : AddCond (T₁ +[h'] T₂) T₃) :
|
||
T₁ +[h'] T₂ +[h] T₃ = T₁ +[h'.add_right_of_add_left h] (T₂ +[h'.of_add_left h] T₃) := by
|
||
rw [add_assoc']
|
||
|
||
/-! TODO: Show that the product is well defined with respect to Rel. -/
|
||
|
||
/-!
|
||
|
||
## Product of `TensorIndex` allowed
|
||
|
||
-/
|
||
|
||
|
||
def ProdCond (T₁ T₂ : 𝓣.TensorIndex) : Prop :=
|
||
T₁.AppendCond T₂
|
||
|
||
namespace ProdCond
|
||
|
||
lemma to_AppendCond {T₁ T₂ : 𝓣.TensorIndex} (h : ProdCond T₁ T₂) :
|
||
T₁.AppendCond T₂ := h
|
||
|
||
end ProdCond
|
||
|
||
/-- The tensor product of two `TensorIndex`. -/
|
||
def prod (T₁ T₂ : 𝓣.TensorIndex)
|
||
(h : ProdCond T₁ T₂) : 𝓣.TensorIndex where
|
||
toColorIndexList := T₁ ++[h] T₂
|
||
tensor := 𝓣.mapIso IndexList.appendEquiv (T₁.colorMap_sumELim T₂) <|
|
||
𝓣.tensoratorEquiv _ _ (T₁.tensor ⊗ₜ[R] T₂.tensor)
|
||
|
||
@[simp]
|
||
lemma prod_toColorIndexList (T₁ T₂ : 𝓣.TensorIndex) (h : ProdCond T₁ T₂) :
|
||
(prod T₁ T₂ h).toColorIndexList = T₁.toColorIndexList ++[h] T₂.toColorIndexList := rfl
|
||
|
||
end TensorIndex
|
||
end
|
||
end TensorStructure
|