PhysLean/HepLean/SpaceTime/LorentzTensor/Real/IndexNotation.lean
2024-08-14 16:55:13 -04:00

146 lines
5.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.TensorIndex
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Indices.IndexString
import HepLean.SpaceTime.LorentzTensor.Real.Basic
/-!
# Index notation for real Lorentz tensors
This uses the general concepts of index notation in `HepLean.SpaceTime.LorentzTensor.IndexNotation`
to define the index notation for real Lorentz tensors.
-/
instance : IndexNotation realTensorColor.Color where
charList := {'ᵘ', 'ᵤ'}
notaEquiv :=
⟨fun c =>
match c with
| realTensorColor.ColorType.up => ⟨'ᵘ', Finset.mem_insert_self 'ᵘ' {'ᵤ'}⟩
| realTensorColor.ColorType.down => ⟨'ᵤ', Finset.insert_eq_self.mp (by rfl)⟩,
fun c =>
if c = 'ᵘ' then realTensorColor.ColorType.up
else realTensorColor.ColorType.down,
by
intro c
match c with
| realTensorColor.ColorType.up => rfl
| realTensorColor.ColorType.down => rfl,
by
intro c
by_cases hc : c = 'ᵘ'
simp [hc]
exact SetCoe.ext (id (Eq.symm hc))
have hc' : c = 'ᵤ' := by
have hc2 := c.2
simp at hc2
simp_all
simp [hc']
exact SetCoe.ext (id (Eq.symm hc'))⟩
namespace realLorentzTensor
open realTensorColor
variable {d : }
instance : IndexNotation (realLorentzTensor d).Color := instIndexNotationColorRealTensorColor
instance : DecidableEq (realLorentzTensor d).Color := instDecidableEqColorRealTensorColor
@[simp]
lemma indexNotation_eq_color : @realLorentzTensor.instIndexNotationColor d =
instIndexNotationColorRealTensorColor := by
rfl
@[simp]
lemma decidableEq_eq_color : @realLorentzTensor.instDecidableEqColor d =
instDecidableEqColorRealTensorColor := by
rfl
@[simp]
lemma realLorentzTensor_color : (realLorentzTensor d).Color = realTensorColor.Color := by
rfl
@[simp]
lemma toTensorColor_eq : (realLorentzTensor d).toTensorColor = realTensorColor := by
rfl
open IndexNotation IndexString
open TensorStructure TensorIndex
/-- The construction of a tensor index from a tensor and a string satisfying conditions
which can be automatically checked. This is a modified version of
`TensorStructure.TensorIndex.mkDualMap` specific to real Lorentz tensors. -/
noncomputable def fromIndexStringColor {cn : Fin n → realTensorColor.Color}
(T : (realLorentzTensor d).Tensor cn) (s : String)
(hs : listCharIndexStringBool realTensorColor.Color s.toList = true)
(hn : n = (toIndexList' s hs).length)
(hD : (toIndexList' s hs).withDual = (toIndexList' s hs).withUniqueDual)
(hC : IndexList.ColorCond.bool (toIndexList' s hs))
(hd : TensorColor.ColorMap.DualMap.boolFin (toIndexList' s hs).colorMap (cn ∘ Fin.cast hn.symm)) :
(realLorentzTensor d).TensorIndex :=
TensorStructure.TensorIndex.mkDualMap T ⟨(toIndexList' s hs), hD,
IndexList.ColorCond.iff_bool.mpr hC⟩ hn
(TensorColor.ColorMap.DualMap.boolFin_DualMap hd)
@[simp]
lemma fromIndexStringColor_toIndexColorList
{cn : Fin n → realTensorColor.Color}
(T : (realLorentzTensor d).Tensor cn) (s : String)
(hs : listCharIndexStringBool realTensorColor.Color s.toList = true)
(hn : n = (toIndexList' s hs).length)
(hD : (toIndexList' s hs).withDual = (toIndexList' s hs).withUniqueDual)
(hC : IndexList.ColorCond.bool (toIndexList' s hs))
(hd : TensorColor.ColorMap.DualMap.boolFin (toIndexList' s hs).colorMap (cn ∘ Fin.cast hn.symm)) :
(fromIndexStringColor T s hs hn hD hC hd).toColorIndexList =
⟨(toIndexList' s hs), hD,
IndexList.ColorCond.iff_bool.mpr hC⟩ := by
rfl
/-- A tactics used to prove `colorPropBool` for real Lorentz tensors. -/
macro "prodTactic" : tactic =>
`(tactic| {
apply (ColorIndexList.AppendCond.iff_bool _ _).mpr
change @ColorIndexList.AppendCond.bool realTensorColor instIndexNotationColorRealTensorColor instDecidableEqColorRealTensorColor
_ _
simp only [indexNotation_eq_color, fromIndexStringColor, mkDualMap, toTensorColor_eq,
String.toList, ne_eq, decidableEq_eq_color]
rw [ColorIndexList.AppendCond.bool]
rw [Bool.if_false_left, Bool.and_eq_true]
simp only [indexNotation_eq_color, decidableEq_eq_color, toTensorColor_eq,
prod_toColorIndexList, ColorIndexList.append_toIndexList, decide_not, Bool.not_not]
apply And.intro
· rfl
· rfl})
/-- A tactic used to prove `boolFin` for real Lornetz tensors. -/
macro "dualMapTactic" : tactic =>
`(tactic| {
simp only [String.toList, ↓Char.isValue, toTensorColor_eq]
rfl})
/-- Notation for the construction of a tensor index from a tensor and a string.
Conditions are checked automatically. -/
notation:20 T "|" S:21 => fromIndexStringColor T S (by rfl) (by rfl) (by rfl) (by rfl) (by dualMapTactic)
/-- Notation for the product of two tensor indices. Conditions are checked automatically. -/
notation:10 T "⊗ᵀ" S:11 => TensorIndex.prod T S (by prodTactic)
/-(IndexListColor.colorPropBool_indexListColorProp
(by prodTactic))-/
def colorIndexListCast (l : ColorIndexList realTensorColor) : ColorIndexList (realLorentzTensor d).toTensorColor :=
l
/-- An example showing the allowed constructions. -/
example (T : (realLorentzTensor d).Tensor ![ColorType.up, ColorType.down]) : True := by
let _ := fromIndexStringColor T "ᵤ₁ᵤ₂" (by rfl) (by rfl) (by rfl) (by
rfl) (by dualMapTactic)
let _ := T|"ᵤ₁ᵤ₂" ⊗ᵀ T|"ᵘ³ᵤ₄" ⊗ᵀ T|"ᵘ¹ᵘ⁴"
exact trivial
end realLorentzTensor