359 lines
14 KiB
Text
359 lines
14 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.Wick.SuperCommute
|
||
/-!
|
||
|
||
# Operator map
|
||
|
||
-/
|
||
|
||
namespace Wick
|
||
|
||
noncomputable section
|
||
|
||
open FieldStatistic
|
||
|
||
/-- A map from the free algebra of fields `FreeAlgebra ℂ I` to an algebra `A`, to be
|
||
thought of as the operator algebra is said to be an operator map if
|
||
all super commutors of fields land in the center of `A`,
|
||
if two fields are of a different grade then their super commutor lands on zero,
|
||
and the `koszulOrder` (normal order) of any term with a super commutor of two fields present
|
||
is zero.
|
||
This can be thought as as a condtion on the operator algebra `A` as much as it can
|
||
on `F`. -/
|
||
class OperatorMap {A : Type} [Semiring A] [Algebra ℂ A]
|
||
(q : I → FieldStatistic) (le1 : I → I → Prop)
|
||
[DecidableRel le1] (F : FreeAlgebra ℂ I →ₐ[ℂ] A) : Prop where
|
||
superCommute_mem_center : ∀ i j, F (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) ∈
|
||
Subalgebra.center ℂ A
|
||
superCommute_diff_grade_zero : ∀ i j, q i ≠ q j →
|
||
F (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) = 0
|
||
superCommute_ordered_zero : ∀ i j, ∀ a b,
|
||
F (koszulOrder q le1 (a * superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j) * b)) = 0
|
||
|
||
namespace OperatorMap
|
||
|
||
variable {I: Type} {A : Type} [Semiring A] [Algebra ℂ A]
|
||
{q : I → FieldStatistic} {le1 : I → I → Prop}
|
||
[DecidableRel le1] (F : FreeAlgebra ℂ I →ₐ[ℂ] A)
|
||
|
||
lemma superCommute_ofList_singleton_ι_center [OperatorMap q le1 F] (i j :I) :
|
||
F (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ j)) ∈ Subalgebra.center ℂ A := by
|
||
have h1 : F (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ j)) =
|
||
xa • F (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) := by
|
||
rw [← map_smul]
|
||
congr
|
||
rw [ofList_eq_smul_one, ofList_singleton]
|
||
rw [map_smul]
|
||
rfl
|
||
rw [h1]
|
||
refine Subalgebra.smul_mem (Subalgebra.center ℂ A) ?_ xa
|
||
exact superCommute_mem_center (le1 := le1) i j
|
||
|
||
end OperatorMap
|
||
|
||
lemma superCommuteSplit_operatorMap {I : Type} (q : I → FieldStatistic)
|
||
(le1 : I → I → Prop) [DecidableRel le1]
|
||
(lb : List I) (xa xb : ℂ) (n : ℕ)
|
||
(hn : n < lb.length) {A : Type} [Semiring A] [Algebra ℂ A] (f : FreeAlgebra ℂ I →ₐ[ℂ] A)
|
||
[OperatorMap q le1 f] (i : I) :
|
||
f (superCommuteSplit q [i] lb xa xb n hn) =
|
||
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩)))
|
||
* (superCommuteCoef q [i] (List.take n lb) •
|
||
f (ofList (List.eraseIdx lb n) xb)) := by
|
||
have hn : f ((superCommute q) (ofList [i] xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩))) ∈
|
||
Subalgebra.center ℂ A :=
|
||
OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) f i (lb.get ⟨n, hn⟩)
|
||
rw [Subalgebra.mem_center_iff] at hn
|
||
rw [superCommuteSplit, map_mul, map_mul, map_smul, hn, mul_assoc, smul_mul_assoc,
|
||
← map_mul, ← ofList_pair]
|
||
congr
|
||
· exact Eq.symm (List.eraseIdx_eq_take_drop_succ lb n)
|
||
· exact one_mul xb
|
||
|
||
lemma superCommuteLiftSplit_operatorMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → FieldStatistic) (c : (Σ i, f i)) (r : List I) (x y : ℂ) (n : ℕ)
|
||
(hn : n < r.length)
|
||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||
{A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ (Σ i, f i) →ₐ[ℂ] A)
|
||
[OperatorMap (fun i => q i.1) le1 F] :
|
||
F (superCommuteLiftSplit q [c] r x y n hn) = superCommuteLiftCoef q [c] (List.take n r) •
|
||
(F (superCommute (fun i => q i.1) (ofList [c] x)
|
||
(sumFiber f (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩))))
|
||
* F (ofListLift f (List.eraseIdx r n) y)) := by
|
||
rw [superCommuteLiftSplit]
|
||
rw [map_smul]
|
||
congr
|
||
rw [map_mul, map_mul]
|
||
have h1 : F ((superCommute fun i => q i.fst) (ofList [c] x) ((sumFiber f)
|
||
(FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩)))) ∈ Subalgebra.center ℂ A := by
|
||
rw [sumFiber_ι]
|
||
rw [map_sum, map_sum]
|
||
refine Subalgebra.sum_mem _ ?_
|
||
intro n
|
||
exact fun a => OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) F c _
|
||
rw [Subalgebra.mem_center_iff] at h1
|
||
rw [h1, mul_assoc, ← map_mul]
|
||
congr
|
||
rw [ofListLift, ofListLift, ofListLift, ← map_mul]
|
||
congr
|
||
rw [← ofList_pair, one_mul]
|
||
congr
|
||
exact Eq.symm (List.eraseIdx_eq_take_drop_succ r n)
|
||
|
||
lemma superCommute_koszulOrder_le_ofList {I : Type}
|
||
(q : I → FieldStatistic) (r : List I) (x : ℂ)
|
||
(le1 :I → I → Prop) [DecidableRel le1] [IsTotal I le1] [IsTrans I le1]
|
||
(i : I)
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ I →ₐ A) [OperatorMap q le1 F] :
|
||
F ((superCommute q (FreeAlgebra.ι ℂ i) (koszulOrder q le1 (ofList r x)))) =
|
||
∑ n : Fin r.length, (superCommuteCoef q [r.get n] (r.take n)) •
|
||
(F (((superCommute q) (ofList [i] 1)) (FreeAlgebra.ι ℂ (r.get n))) *
|
||
F ((koszulOrder q le1) (ofList (r.eraseIdx ↑n) x))) := by
|
||
rw [koszulOrder_ofList, map_smul, map_smul, ← ofList_singleton, superCommute_ofList_sum]
|
||
rw [map_sum, ← (HepLean.List.insertionSortEquiv le1 r).sum_comp]
|
||
conv_lhs =>
|
||
enter [2, 2]
|
||
intro n
|
||
rw [superCommuteSplit_operatorMap (le1 := le1)]
|
||
enter [1, 2, 2, 2]
|
||
change ((List.insertionSort le1 r).get ∘ (HepLean.List.insertionSortEquiv le1 r)) n
|
||
rw [HepLean.List.insertionSort_get_comp_insertionSortEquiv]
|
||
conv_lhs =>
|
||
enter [2, 2]
|
||
intro n
|
||
rw [HepLean.List.eraseIdx_insertionSort_fin le1 r n]
|
||
rw [ofList_insertionSort_eq_koszulOrder q le1]
|
||
rw [Finset.smul_sum]
|
||
conv_lhs =>
|
||
rhs
|
||
intro n
|
||
rw [map_smul, smul_smul, Algebra.mul_smul_comm, smul_smul]
|
||
congr
|
||
funext n
|
||
by_cases hq : q i ≠ q (r.get n)
|
||
· have hn := OperatorMap.superCommute_diff_grade_zero (q := q) (F := F) le1 i (r.get n) hq
|
||
conv_lhs =>
|
||
enter [2, 1]
|
||
rw [ofList_singleton, hn]
|
||
conv_rhs =>
|
||
enter [2, 1]
|
||
rw [ofList_singleton, hn]
|
||
simp
|
||
· congr 1
|
||
trans staticWickCoef q le1 r i n
|
||
· rw [staticWickCoef, mul_assoc]
|
||
refine staticWickCoef_eq_get q le1 r i n ?_
|
||
simpa using hq
|
||
|
||
lemma koszulOrder_of_le_all_ofList {I : Type}
|
||
(q : I → FieldStatistic) (r : List I) (x : ℂ) (le1 : I → I → Prop) [DecidableRel le1]
|
||
(i : I)
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ I →ₐ A) [OperatorMap q le1 F] :
|
||
F (koszulOrder q le1 (ofList r x * FreeAlgebra.ι ℂ i))
|
||
= superCommuteCoef q [i] r • F (koszulOrder q le1 (FreeAlgebra.ι ℂ i * ofList r x)) := by
|
||
conv_lhs =>
|
||
enter [2, 2]
|
||
rw [← ofList_singleton]
|
||
rw [ofListLift_ofList_superCommute' q]
|
||
rw [map_sub]
|
||
rw [sub_eq_add_neg]
|
||
rw [map_add]
|
||
conv_lhs =>
|
||
enter [2, 2]
|
||
rw [map_smul]
|
||
rw [← neg_smul]
|
||
rw [map_smul, map_smul, map_smul]
|
||
conv_lhs =>
|
||
rhs
|
||
rhs
|
||
rw [superCommute_ofList_sum]
|
||
rw [map_sum, map_sum]
|
||
dsimp [superCommuteSplit]
|
||
rw [ofList_singleton]
|
||
rhs
|
||
intro n
|
||
rw [Algebra.smul_mul_assoc, Algebra.smul_mul_assoc]
|
||
rw [map_smul, map_smul]
|
||
rw [OperatorMap.superCommute_ordered_zero]
|
||
simp only [smul_zero, Finset.sum_const_zero, add_zero]
|
||
rw [ofList_singleton]
|
||
|
||
lemma le_all_mul_koszulOrder_ofList {I : Type}
|
||
(q : I → FieldStatistic) (r : List I) (x : ℂ) (le1 : I → I→ Prop) [DecidableRel le1]
|
||
(i : I) (hi : ∀ (j : I), le1 j i)
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ I →ₐ A) [OperatorMap q le1 F] :
|
||
F (FreeAlgebra.ι ℂ i * koszulOrder q le1 (ofList r x)) =
|
||
F ((koszulOrder q le1) (FreeAlgebra.ι ℂ i * ofList r x)) +
|
||
F (((superCommute q) (ofList [i] 1)) ((koszulOrder q le1) (ofList r x))) := by
|
||
rw [koszulOrder_ofList, Algebra.mul_smul_comm, map_smul, ← ofList_singleton,
|
||
ofList_ofList_superCommute q, map_add, smul_add, ← map_smul]
|
||
conv_lhs =>
|
||
enter [1, 2]
|
||
rw [← Algebra.smul_mul_assoc, smul_smul, mul_comm, ← smul_smul, ← koszulOrder_ofList,
|
||
Algebra.smul_mul_assoc, ofList_singleton]
|
||
rw [koszulOrder_mul_ge, map_smul]
|
||
congr
|
||
· rw [koszulOrder_of_le_all_ofList]
|
||
rw [superCommuteCoef_perm_snd q [i] (List.insertionSort le1 r) r
|
||
(List.perm_insertionSort le1 r)]
|
||
rw [smul_smul]
|
||
rw [superCommuteCoef_mul_self]
|
||
simp [ofList_singleton]
|
||
· rw [map_smul, map_smul]
|
||
· exact fun j => hi j
|
||
|
||
/-- In the expansions of `F (FreeAlgebra.ι ℂ i * koszulOrder le1 q (ofList r x))`
|
||
the ter multiplying `F ((koszulOrder le1 q) (ofList (optionEraseZ r i n) x))`. -/
|
||
def superCommuteCenterOrder {I : Type}
|
||
(q : I → FieldStatistic) (r : List I) (i : I)
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ I →ₐ[ℂ] A)
|
||
(n : Option (Fin r.length)) : A :=
|
||
match n with
|
||
| none => 1
|
||
| some n => superCommuteCoef q [r.get n] (r.take n) • F (((superCommute q) (ofList [i] 1))
|
||
(FreeAlgebra.ι ℂ (r.get n)))
|
||
|
||
@[simp]
|
||
lemma superCommuteCenterOrder_none {I : Type}
|
||
(q : I → FieldStatistic) (r : List I) (i : I)
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ I →ₐ[ℂ] A) :
|
||
superCommuteCenterOrder q r i F none = 1 := by
|
||
simp [superCommuteCenterOrder]
|
||
|
||
open HepLean.List
|
||
|
||
lemma le_all_mul_koszulOrder_ofList_expand {I : Type}
|
||
(q : I → FieldStatistic) (r : List I) (x : ℂ) (le1 : I → I→ Prop) [DecidableRel le1]
|
||
[IsTotal I le1] [IsTrans I le1]
|
||
(i : I) (hi : ∀ (j : I), le1 j i)
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ I →ₐ[ℂ] A) [OperatorMap q le1 F] :
|
||
F (FreeAlgebra.ι ℂ i * koszulOrder q le1 (ofList r x)) =
|
||
∑ n, superCommuteCenterOrder q r i F n *
|
||
F ((koszulOrder q le1) (ofList (optionEraseZ r i n) x)) := by
|
||
rw [le_all_mul_koszulOrder_ofList]
|
||
conv_lhs =>
|
||
rhs
|
||
rw [ofList_singleton]
|
||
rw [superCommute_koszulOrder_le_ofList]
|
||
simp only [List.get_eq_getElem, Fintype.sum_option, superCommuteCenterOrder_none, one_mul]
|
||
congr
|
||
· rw [← ofList_singleton, ← ofList_pair]
|
||
simp only [List.singleton_append, one_mul]
|
||
rfl
|
||
· funext n
|
||
simp only [superCommuteCenterOrder, List.get_eq_getElem, Algebra.smul_mul_assoc]
|
||
rfl
|
||
exact fun j => hi j
|
||
|
||
lemma le_all_mul_koszulOrder_ofListLift_expand {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → FieldStatistic) (r : List I) (x : ℂ)
|
||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||
[IsTotal (Σ i, f i) le1] [IsTrans (Σ i, f i) le1]
|
||
(i : (Σ i, f i)) (hi : ∀ (j : (Σ i, f i)), le1 j i)
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F] :
|
||
F (ofList [i] 1 * koszulOrder (fun i => q i.1) le1 (ofListLift f r x)) =
|
||
F ((koszulOrder (fun i => q i.fst) le1) (ofList [i] 1 * ofListLift f r x)) +
|
||
∑ n : (Fin r.length), superCommuteCoef q [r.get n] (List.take (↑n) r) •
|
||
F (((superCommute fun i => q i.fst) (ofList [i] 1)) (ofListLift f [r.get n] 1)) *
|
||
F ((koszulOrder (fun i => q i.fst) le1) (ofListLift f (r.eraseIdx ↑n) x)) := by
|
||
match r with
|
||
| [] =>
|
||
simp only [map_mul, List.length_nil, Finset.univ_eq_empty, List.get_eq_getElem, List.take_nil,
|
||
List.eraseIdx_nil, Algebra.smul_mul_assoc, Finset.sum_empty, add_zero]
|
||
rw [ofListLift_empty_smul]
|
||
simp only [map_smul, koszulOrder_one, map_one, Algebra.mul_smul_comm, mul_one]
|
||
rw [ofList_singleton, koszulOrder_ι]
|
||
| r0 :: r =>
|
||
rw [ofListLift_expand, map_sum, Finset.mul_sum, map_sum]
|
||
let e1 (a : CreateAnnihilateSect f (r0 :: r)) :
|
||
Option (Fin a.toList.length) ≃ Option (Fin (r0 :: r).length) :=
|
||
Equiv.optionCongr (Fin.castOrderIso (CreateAnnihilateSect.toList_length a)).toEquiv
|
||
conv_lhs =>
|
||
rhs
|
||
intro a
|
||
rw [ofList_singleton, le_all_mul_koszulOrder_ofList_expand _ _ _ _ _ hi]
|
||
rw [← (e1 a).symm.sum_comp]
|
||
rhs
|
||
intro n
|
||
rw [Finset.sum_comm]
|
||
simp only [Fintype.sum_option]
|
||
congr 1
|
||
· simp only [List.length_cons, List.get_eq_getElem, superCommuteCenterOrder,
|
||
Equiv.optionCongr_symm, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, Equiv.optionCongr_apply,
|
||
RelIso.coe_fn_toEquiv, Option.map_none', optionEraseZ, one_mul, e1]
|
||
rw [← map_sum, Finset.mul_sum, ← map_sum]
|
||
apply congrArg
|
||
apply congrArg
|
||
congr
|
||
funext x
|
||
rw [ofList_cons_eq_ofList]
|
||
· congr
|
||
funext n
|
||
rw [← (CreateAnnihilateSect.extractEquiv n).symm.sum_comp]
|
||
simp only [List.get_eq_getElem, List.length_cons, Equiv.optionCongr_symm, OrderIso.toEquiv_symm,
|
||
Fin.symm_castOrderIso, Equiv.optionCongr_apply, RelIso.coe_fn_toEquiv, Option.map_some',
|
||
Fin.castOrderIso_apply, Algebra.smul_mul_assoc, e1]
|
||
erw [Finset.sum_product]
|
||
have h1 (a0 : f (r0 :: r)[↑n]) (a : CreateAnnihilateSect f ((r0 :: r).eraseIdx ↑n)) :
|
||
superCommuteCenterOrder (fun i => q i.fst)
|
||
((CreateAnnihilateSect.extractEquiv n).symm (a0, a)).toList i F
|
||
(some (Fin.cast (by simp) n)) =
|
||
superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) (r0 :: r)) •
|
||
F (((superCommute fun i => q i.fst) (ofList [i] 1))
|
||
(FreeAlgebra.ι ℂ ⟨(r0 :: r).get n, a0⟩)) := by
|
||
simp only [superCommuteCenterOrder, List.get_eq_getElem, List.length_cons, Fin.coe_cast]
|
||
erw [CreateAnnihilateSect.extractEquiv_symm_toList_get_same]
|
||
have hsc : superCommuteCoef (fun i => q i.fst) [⟨(r0 :: r).get n, a0⟩]
|
||
(List.take (↑n) ((CreateAnnihilateSect.extractEquiv n).symm (a0, a)).toList) =
|
||
superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) ((r0 :: r))) := by
|
||
simp only [superCommuteCoef, List.get_eq_getElem, List.length_cons, Fin.isValue,
|
||
CreateAnnihilateSect.toList_grade_take]
|
||
rfl
|
||
erw [hsc]
|
||
rfl
|
||
conv_lhs =>
|
||
rhs
|
||
intro a0
|
||
rhs
|
||
intro a
|
||
erw [h1]
|
||
conv_lhs =>
|
||
rhs
|
||
intro a0
|
||
rw [← Finset.mul_sum]
|
||
|
||
conv_lhs =>
|
||
rhs
|
||
intro a0
|
||
enter [2, 2]
|
||
intro a
|
||
simp [optionEraseZ]
|
||
enter [2, 2, 1]
|
||
rw [← CreateAnnihilateSect.eraseIdx_toList]
|
||
erw [CreateAnnihilateSect.extractEquiv_symm_eraseIdx]
|
||
rw [← Finset.sum_mul]
|
||
conv_lhs =>
|
||
lhs
|
||
rw [← Finset.smul_sum]
|
||
erw [← map_sum, ← map_sum, ← ofListLift_singleton_one]
|
||
conv_lhs =>
|
||
rhs
|
||
rw [← map_sum, ← map_sum]
|
||
simp only [List.get_eq_getElem, List.length_cons, Equiv.symm_apply_apply,
|
||
Algebra.smul_mul_assoc]
|
||
erw [← ofListLift_expand]
|
||
simp only [List.get_eq_getElem, List.length_cons, Algebra.smul_mul_assoc]
|
||
|
||
end
|
||
end Wick
|