PhysLean/HepLean/PerturbationTheory/Wick/StaticTheorem.lean
2024-12-20 13:57:29 +00:00

97 lines
3.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Wick.Contractions
/-!
# Static Wick's theorem
-/
namespace Wick
noncomputable section
open HepLean.List
open FieldStatistic
variable {𝓕 : Type} {f : 𝓕 → Type} [∀ i, Fintype (f i)] (q : 𝓕 → FieldStatistic)
(le : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le]
lemma static_wick_nil {A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A)
(S : Contractions.Splitting f le) :
F (ofListLift f [] 1) = ∑ c : Contractions [],
c.toCenterTerm f q le F S *
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.normalize 1)) := by
rw [← Contractions.nilEquiv.symm.sum_comp]
simp only [Finset.univ_unique, PUnit.default_eq_unit, Contractions.nilEquiv, Equiv.coe_fn_symm_mk,
Finset.sum_const, Finset.card_singleton, one_smul]
dsimp [Contractions.normalize, Contractions.toCenterTerm]
simp [ofListLift_empty]
lemma static_wick_cons [IsTrans ((i : 𝓕) × f i) le] [IsTotal ((i : 𝓕) × f i) le]
{A : Type} [Semiring A] [Algebra A] (r : List 𝓕) (a : 𝓕)
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le F]
(S : Contractions.Splitting f le)
(ih : F (ofListLift f r 1) =
∑ c : Contractions r, c.toCenterTerm f q le F S * F (koszulOrder (fun i => q i.fst) le
(ofListLift f c.normalize 1))) :
F (ofListLift f (a :: r) 1) = ∑ c : Contractions (a :: r),
c.toCenterTerm f q le F S *
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.normalize 1)) := by
rw [ofListLift_cons_eq_ofListLift, map_mul, ih, Finset.mul_sum,
← Contractions.consEquiv.symm.sum_comp]
erw [Finset.sum_sigma]
congr
funext c
have hb := S.h𝓑 a
rw [← mul_assoc]
have hi := c.toCenterTerm_center f q le F S
rw [Subalgebra.mem_center_iff] at hi
rw [hi, mul_assoc, ← map_mul, hb, add_mul, map_add]
conv_lhs =>
enter [2, 1]
rw [ofList_eq_smul_one, Algebra.smul_mul_assoc, ofList_singleton]
rw [mul_koszulOrder_le]
conv_lhs =>
enter [2, 1]
rw [← map_smul, ← Algebra.smul_mul_assoc]
rw [← ofList_singleton, ← ofList_eq_smul_one]
conv_lhs =>
enter [2, 2]
rw [ofList_eq_smul_one, Algebra.smul_mul_assoc, map_smul]
rw [le_all_mul_koszulOrder_ofListLift_expand]
conv_lhs =>
enter [2, 2]
rw [smul_add, Finset.smul_sum]
rw [← map_smul, ← map_smul, ← Algebra.smul_mul_assoc, ← ofList_eq_smul_one]
enter [2, 2]
intro n
rw [← Algebra.smul_mul_assoc, smul_comm, ← map_smul, ← LinearMap.map_smul₂,
← ofList_eq_smul_one]
rw [← add_assoc, ← map_add, ← map_add, ← add_mul, ← hb, ← ofListLift_cons_eq_ofListLift, mul_add]
rw [Fintype.sum_option]
congr 1
rw [Finset.mul_sum]
congr
funext n
rw [← mul_assoc]
rfl
exact S.h𝓑p a
exact S.h𝓑n a
theorem static_wick_theorem [IsTrans ((i : 𝓕) × f i) le] [IsTotal ((i : 𝓕) × f i) le]
{A : Type} [Semiring A] [Algebra A] (r : List 𝓕)
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le F]
(S : Contractions.Splitting f le) :
F (ofListLift f r 1) = ∑ c : Contractions r, c.toCenterTerm f q le F S *
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.normalize 1)) := by
induction r with
| nil => exact static_wick_nil q le F S
| cons a r ih => exact static_wick_cons q le r a F S ih
end
end Wick