PhysLean/HepLean/StandardModel/CliffordAlgebra.lean
2024-05-13 07:42:55 -04:00

66 lines
1.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.StandardModel.Basic
/-!
# The Clifford Algebra
This file defines the Gamma matrices.
## TODO
- Prove that the algebra generated by the gamma matrices is ismorphic to the
Clifford algebra assocaited with spacetime.
- Include relations for gamma matrices.
-/
namespace StandardModel
open Complex
noncomputable section diracRepresentation
def γ0 : Matrix (Fin 4) (Fin 4) :=
![![1, 0, 0, 0], ![0, 1, 0, 0], ![0, 0, -1, 0], ![0, 0, 0, -1]]
def γ1 : Matrix (Fin 4) (Fin 4) :=
![![0, 0, 0, 1], ![0, 0, 1, 0], ![0, -1, 0, 0], ![-1, 0, 0, 0]]
def γ2 : Matrix (Fin 4) (Fin 4) :=
![![0, 0, 0, - I], ![0, 0, I, 0], ![0, I, 0, 0], ![-I, 0, 0, 0]]
def γ3 : Matrix (Fin 4) (Fin 4) :=
![![0, 0, 1, 0], ![0, 0, 0, -1], ![-1, 0, 0, 0], ![0, 1, 0, 0]]
def γ5 : Matrix (Fin 4) (Fin 4) := I • (γ0 * γ1 * γ2 * γ3)
@[simp]
def γ : Fin 4 → Matrix (Fin 4) (Fin 4) := ![γ0, γ1, γ2, γ3]
namespace γ
open spaceTime
variable (μ ν : Fin 4)
@[simp]
def γSet : Set (Matrix (Fin 4) (Fin 4) ) := {γ i | i : Fin 4}
lemma γ_in_γSet (μ : Fin 4) : γ μ ∈ γSet := by
simp [γSet]
def diracAlgebra : Subalgebra (Matrix (Fin 4) (Fin 4) ) :=
Algebra.adjoin γSet
lemma γSet_subset_diracAlgebra : γSet ⊆ diracAlgebra :=
Algebra.subset_adjoin
lemma γ_in_diracAlgebra (μ : Fin 4) : γ μ ∈ diracAlgebra :=
γSet_subset_diracAlgebra (γ_in_γSet μ)
end γ
end diracRepresentation
end StandardModel