PhysLean/HepLean/Lorentz/ComplexTensor/Basis.lean
2025-01-27 06:20:25 +00:00

229 lines
10 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.NodeIdentities.PermProd
import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
import HepLean.Meta.TODO.Basic
/-!
## Basis vectors associated with complex Lorentz tensors
Note that this file will be much improved once:
https://github.com/leanprover-community/mathlib4/pull/11156
is merged.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
open Fermion
noncomputable section
namespace complexLorentzTensor
/-- Basis vectors for complex Lorentz tensors. -/
def basisVector {n : } (c : Fin n → complexLorentzTensor.C)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
complexLorentzTensor.F.obj (OverColor.mk c) :=
PiTensorProduct.tprod (fun i => complexLorentzTensor.basis (c i) (b i))
lemma perm_basisVector_cast {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C}
(σ : OverColor.mk c ⟶ OverColor.mk c1) (i : Fin m) :
complexLorentzTensor.repDim (c ((OverColor.Hom.toEquiv σ).symm i)) =
complexLorentzTensor.repDim (c1 i) := by
have h1 := OverColor.Hom.toEquiv_symm_apply σ i
simp only [Functor.const_obj_obj, OverColor.mk_hom] at h1
rw [h1]
lemma basis_eq_FD {n : } (c : Fin n → complexLorentzTensor.C)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) (i : Fin n)
(h : { as := c i } = { as := c1 }) :
(complexLorentzTensor.FD.map (eqToHom h)).hom
(complexLorentzTensor.basis (c i) (b i)) =
(complexLorentzTensor.basis c1 (Fin.cast (by simp_all) (b i))) := by
have h' : c i = c1 := by
simp_all only [Discrete.mk.injEq]
subst h'
rfl
/-- The `perm` node acting on basis vectors corresponds to a basis vector. -/
lemma perm_basisVector {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (σ : OverColor.mk c ⟶ OverColor.mk c1)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
(perm σ (tensorNode (basisVector c b))).tensor =
(basisVector c1 (fun i => Fin.cast (perm_basisVector_cast σ i)
(b ((OverColor.Hom.toEquiv σ).symm i)))) := by
rw [perm_tensor]
simp only [TensorSpecies.F_def, tensorNode_tensor]
rw [basisVector, basisVector]
erw [OverColor.lift.map_tprod]
apply congrArg
funext i
simp only [OverColor.mk_hom, OverColor.lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
rw [basis_eq_FD]
/-- The `perm` node acting on basis vectors corresponds to a basis vector, as a tensor tree
structure. -/
lemma perm_basisVector_tree {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (σ : OverColor.mk c ⟶ OverColor.mk c1)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
(perm σ (tensorNode (basisVector c b))).tensor =
(tensorNode (basisVector c1 (fun i => Fin.cast (perm_basisVector_cast σ i)
(b ((OverColor.Hom.toEquiv σ).symm i))))).tensor := by
exact perm_basisVector _ _
/-- The scalar determining if contracting two basis vectors together gives zero or not. -/
def contrBasisVectorMul {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
(i : Fin n.succ.succ) (j : Fin n.succ)
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) : :=
(if (b i).val = (b (i.succAbove j)).val then (1 : ) else 0)
lemma contrBasisVectorMul_neg {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {b : Π k, Fin (complexLorentzTensor.repDim (c k))}
(h : ¬ (b i).val = (b (i.succAbove j)).val) :
contrBasisVectorMul i j b = 0 := by
rw [contrBasisVectorMul]
simp only [ite_eq_right_iff, one_ne_zero, imp_false]
exact h
lemma contrBasisVectorMul_pos {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {b : Π k, Fin (complexLorentzTensor.repDim (c k))}
(h : (b i).val = (b (i.succAbove j)).val) :
contrBasisVectorMul i j b = 1 := by
rw [contrBasisVectorMul]
simp only [ite_eq_left_iff, zero_ne_one, imp_false, Decidable.not_not]
exact h
lemma contr_basisVector {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
(contr i j h (tensorNode (basisVector c b))).tensor = (contrBasisVectorMul i j b) •
basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
(fun k => b (i.succAbove (j.succAbove k))) := by
rw [contr_tensor]
simp only [Nat.succ_eq_add_one, tensorNode_tensor]
rw [basisVector]
erw [TensorSpecies.contrMap_tprod]
congr 1
rw [basis_eq_FD]
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply]
erw [basis_contr]
rfl
lemma contr_basisVector_tree {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
(contr i j h (tensorNode (basisVector c b))).tensor =
(smul (contrBasisVectorMul i j b) (tensorNode
(basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
(fun k => b (i.succAbove (j.succAbove k)))))).tensor := by
exact contr_basisVector _
lemma contr_basisVector_tree_pos {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(hn : (b i).val = (b (i.succAbove j)).val := by decide) :
(contr i j h (tensorNode (basisVector c b))).tensor =
((tensorNode (basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
(fun k => b (i.succAbove (j.succAbove k)))))).tensor := by
rw [contr_basisVector_tree, contrBasisVectorMul]
rw [if_pos hn]
simp [smul_tensor]
lemma contr_basisVector_tree_neg {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(hn : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
(contr i j h (tensorNode (basisVector c b))).tensor =
(tensorNode 0).tensor := by
rw [contr_basisVector_tree, contrBasisVectorMul]
rw [if_neg hn]
simp only [Nat.succ_eq_add_one, smul_tensor, tensorNode_tensor, _root_.zero_smul]
/-- Equivalence of Fin types appearing in the product of two basis vectors. -/
def prodBasisVecEquiv {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (i : Fin n ⊕ Fin m) :
Sum.elim (fun i => Fin (complexLorentzTensor.repDim (c i))) (fun i =>
Fin (complexLorentzTensor.repDim (c1 i)))
i ≃ Fin (complexLorentzTensor.repDim ((Sum.elim c c1 i))) :=
match i with
| Sum.inl _ => Equiv.refl _
| Sum.inr _ => Equiv.refl _
/-- The `prod` node acting on basis vectors corresponds to a basis vector. -/
lemma prod_basisVector {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C}
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(b1 : Π k, Fin (complexLorentzTensor.repDim (c1 k))) :
(prod (tensorNode (basisVector c b)) (tensorNode (basisVector c1 b1))).tensor =
basisVector (Sum.elim c c1 ∘ finSumFinEquiv.symm) (fun i =>
prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b b1) (finSumFinEquiv.symm i))) := by
rw [prod_tensor, basisVector, basisVector]
simp only [TensorSpecies.F_def, Functor.id_obj, OverColor.mk_hom,
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
tensorNode_tensor]
have h1 := OverColor.lift.μ_tmul_tprod_mk complexLorentzTensor.FD
(fun i => (complexLorentzTensor.basis (c i)) (b i))
(fun i => (complexLorentzTensor.basis (c1 i)) (b1 i))
erw [h1, OverColor.lift.map_tprod]
apply congrArg
funext i
obtain ⟨k, hk⟩ := finSumFinEquiv.surjective i
subst hk
simp only [Functor.id_obj, OverColor.mk_hom, Function.comp_apply,
OverColor.lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
erw [← (Equiv.apply_eq_iff_eq_symm_apply finSumFinEquiv).mp rfl]
match k with
| Sum.inl k => rfl
| Sum.inr k => rfl
/-- The prod node acting on a basis vectors is a basis vector, as a tensor tree structure. -/
lemma prod_basisVector_tree {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C}
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(b1 : Π k, Fin (complexLorentzTensor.repDim (c1 k))) :
(prod (tensorNode (basisVector c b)) (tensorNode (basisVector c1 b1))).tensor =
(tensorNode (basisVector (Sum.elim c c1 ∘ finSumFinEquiv.symm) (fun i =>
prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b b1) (finSumFinEquiv.symm i))))).tensor := by
exact prod_basisVector _ _
/-- The `eval` node acting on basis vectors corresponds to a basis vector. -/
lemma eval_basisVector {n : } {c : Fin n.succ → complexLorentzTensor.C}
{i : Fin n.succ} (j : Fin (complexLorentzTensor.repDim (c i)))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
(eval i j (tensorNode (basisVector c b))).tensor = (if j = b i then (1 : ) else 0) •
basisVector (c ∘ Fin.succAbove i) (fun k => b (i.succAbove k)) := by
rw [eval_tensor, basisVector, basisVector]
simp only [Nat.succ_eq_add_one, Functor.id_obj, OverColor.mk_hom, tensorNode_tensor,
Function.comp_apply, one_smul, _root_.zero_smul]
erw [TensorSpecies.evalMap_tprod]
congr 1
have h1 : Fin.ofNat' _ ↑j = j := by
simp [Fin.ext_iff]
rw [Basis.repr_self, Finsupp.single_apply, h1]
exact ite_congr (Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a))
(congrFun rfl) (congrFun rfl)
end complexLorentzTensor
end