257 lines
11 KiB
Text
257 lines
11 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.FieldOpAlgebra.StaticWickTheorem
|
||
import HepLean.PerturbationTheory.FieldOpAlgebra.WicksTheorem
|
||
import HepLean.PerturbationTheory.WickContraction.Sign.Join
|
||
import HepLean.PerturbationTheory.WickContraction.TimeCond
|
||
/-!
|
||
|
||
# Wick's theorem for normal ordered lists
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
variable {𝓕 : FieldSpecification}
|
||
open FieldOpFreeAlgebra
|
||
namespace FieldOpAlgebra
|
||
open WickContraction
|
||
open EqTimeOnly
|
||
|
||
/--
|
||
For a list `φs` of `𝓕.FieldOp`, then
|
||
|
||
`𝓣(φs) = ∑ φsΛ, φsΛ.1.wickTerm • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))`
|
||
|
||
where the sum is over all Wick contraction `φsΛ` which only have equal time contractions.
|
||
|
||
This result follows from
|
||
- `static_wick_theorem` to rewrite `𝓣(φs)` on the left hand side as a sum of
|
||
`𝓣(φsΛ.staticWickTerm)`.
|
||
- `EqTimeOnly.timeOrder_staticContract_of_not_mem` and `timeOrder_timeOrder_mid` to set to
|
||
those `𝓣(φsΛ.staticWickTerm)` for which `φsΛ` has a contracted pair which are not
|
||
equal time to zero.
|
||
- `staticContract_eq_timeContract_of_eqTimeOnly` to rewrite the static contract
|
||
in the remaining `𝓣(φsΛ.staticWickTerm)` as a time contract.
|
||
- `timeOrder_timeContract_mul_of_eqTimeOnly_left` to move the time contracts out of the time
|
||
ordering.
|
||
-/
|
||
lemma timeOrder_ofFieldOpList_eqTimeOnly (φs : List 𝓕.FieldOp) :
|
||
𝓣(ofFieldOpList φs) = ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs)}),
|
||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
|
||
rw [static_wick_theorem φs]
|
||
let e2 : WickContraction φs.length ≃
|
||
{φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} ⊕
|
||
{φsΛ : WickContraction φs.length // ¬ φsΛ.EqTimeOnly} :=
|
||
(Equiv.sumCompl _).symm
|
||
rw [← e2.symm.sum_comp]
|
||
simp only [Equiv.symm_symm, Algebra.smul_mul_assoc, Fintype.sum_sum_type,
|
||
Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, map_add, map_sum, map_smul, e2]
|
||
simp only [staticWickTerm, Algebra.smul_mul_assoc, map_smul]
|
||
conv_lhs =>
|
||
enter [2, 2, x]
|
||
rw [timeOrder_timeOrder_left]
|
||
rw [timeOrder_staticContract_of_not_mem _ x.2]
|
||
simp only [Finset.univ_eq_attach, zero_mul, map_zero, smul_zero, Finset.sum_const_zero, add_zero]
|
||
congr
|
||
funext x
|
||
rw [staticContract_eq_timeContract_of_eqTimeOnly]
|
||
rw [timeOrder_timeContract_mul_of_eqTimeOnly_left]
|
||
exact x.2
|
||
exact x.2
|
||
|
||
lemma timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.FieldOp) :
|
||
𝓣(ofFieldOpList φs) = 𝓣(𝓝(ofFieldOpList φs)) +
|
||
∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
|
||
let e1 : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} ≃
|
||
{φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} // φsΛ.1 = empty} ⊕
|
||
{φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} // ¬ φsΛ.1 = empty} :=
|
||
(Equiv.sumCompl _).symm
|
||
rw [timeOrder_ofFieldOpList_eqTimeOnly, ← e1.symm.sum_comp]
|
||
simp only [Equiv.symm_symm, Algebra.smul_mul_assoc, Fintype.sum_sum_type,
|
||
Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, ne_eq, e1]
|
||
congr 1
|
||
· let e2 : {φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} // φsΛ.1 = empty } ≃
|
||
Unit := {
|
||
toFun := fun x => (), invFun := fun x => ⟨⟨empty, by simp⟩, rfl⟩,
|
||
left_inv a := by
|
||
ext
|
||
simp [a.2], right_inv a := by simp}
|
||
rw [← e2.symm.sum_comp]
|
||
simp [e2, sign_empty]
|
||
· let e2 : { φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} // ¬ φsΛ.1 = empty } ≃
|
||
{φsΛ // φsΛ.EqTimeOnly ∧ φsΛ ≠ empty} := {
|
||
toFun := fun x => ⟨x, ⟨x.1.2, x.2⟩⟩, invFun := fun x => ⟨⟨x.1, x.2.1⟩, x.2.2⟩,
|
||
left_inv a := by rfl, right_inv a := by rfl }
|
||
rw [← e2.symm.sum_comp]
|
||
rfl
|
||
|
||
/--
|
||
For a list `φs` of `𝓕.FieldOp`, then
|
||
|
||
`𝓣(𝓝(φs)) = 𝓣(φs) - ∑ φsΛ, φsΛ.1.wickTerm • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))`
|
||
|
||
where the sum is over all *non-empty* Wick contraction `φsΛ` which only
|
||
have equal time contractions.
|
||
|
||
This result follows directly from
|
||
- `timeOrder_ofFieldOpList_eqTimeOnly`
|
||
-/
|
||
lemma normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.FieldOp) :
|
||
𝓣(𝓝(ofFieldOpList φs)) = 𝓣(ofFieldOpList φs) -
|
||
∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
|
||
rw [timeOrder_ofFieldOpList_eq_eqTimeOnly_empty]
|
||
simp
|
||
|
||
/--
|
||
For a list `φs` of `𝓕.FieldOp`, then `𝓣(φs)` is equal to the sum of
|
||
|
||
- `∑ φsΛ, φsΛ.wickTerm` where the sum is over all Wick contraction `φsΛ` which have
|
||
no contractions of equal time.
|
||
- `∑ φsΛ, φsΛ.sign • φsΛ.timeContract * (∑ φssucΛ, φssucΛ.wickTerm)`, where
|
||
the first sum is over all Wick contraction `φsΛ` which only have equal time contractions
|
||
and the second sum is over all Wick contraction `φssucΛ` of the uncontracted elements of `φsΛ`
|
||
which do not have any equal time contractions.
|
||
|
||
The proof of proceeds as follows
|
||
- `wicks_theorem` is used to rewrite `𝓣(φs)` as a sum over all Wick contractions.
|
||
- The sum over all Wick contractions is then split additively into two parts using based on having
|
||
or not having an equal time contractions.
|
||
- Using `join`, the sum `∑ φsΛ, _` over Wick contractions which do have equal time contractions
|
||
is split into two sums `∑ φsΛ, ∑ φsucΛ, _`, the first over non-zero elements
|
||
which only have equal time contractions and the second over Wick contractions `φsucΛ` of
|
||
`[φsΛ]ᵘᶜ` which do not have equal time contractions.
|
||
- `join_sign_timeContract` is then used to equate terms.
|
||
-/
|
||
lemma timeOrder_haveEqTime_split (φs : List 𝓕.FieldOp) :
|
||
𝓣(ofFieldOpList φs) = (∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}),
|
||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))
|
||
+ ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}), φsΛ.1.sign • φsΛ.1.timeContract *
|
||
(∑ φssucΛ : { φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ φssucΛ.HaveEqTime },
|
||
φssucΛ.1.wickTerm) := by
|
||
rw [wicks_theorem]
|
||
simp only [wickTerm]
|
||
let e1 : WickContraction φs.length ≃ {φsΛ // HaveEqTime φsΛ} ⊕ {φsΛ // ¬ HaveEqTime φsΛ} := by
|
||
exact (Equiv.sumCompl HaveEqTime).symm
|
||
rw [← e1.symm.sum_comp]
|
||
simp only [Equiv.symm_symm, Algebra.smul_mul_assoc, Fintype.sum_sum_type,
|
||
Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, ne_eq, sub_left_inj, e1]
|
||
rw [add_comm]
|
||
congr 1
|
||
let f : WickContraction φs.length → 𝓕.FieldOpAlgebra := fun φsΛ =>
|
||
φsΛ.sign • (φsΛ.timeContract.1 * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ))
|
||
change ∑ (φsΛ : {φsΛ : WickContraction φs.length // HaveEqTime φsΛ}), f φsΛ.1 = _
|
||
rw [sum_haveEqTime]
|
||
congr
|
||
funext φsΛ
|
||
simp only [f]
|
||
conv_lhs =>
|
||
enter [2, φsucΛ]
|
||
rw [← Algebra.smul_mul_assoc]
|
||
rw [join_sign_timeContract φsΛ.1 φsucΛ.1]
|
||
conv_lhs =>
|
||
enter [2, φsucΛ]
|
||
rw [mul_assoc]
|
||
rw [← Finset.mul_sum, ← Algebra.smul_mul_assoc]
|
||
congr
|
||
funext φsΛ'
|
||
simp only [ne_eq, Algebra.smul_mul_assoc]
|
||
congr 1
|
||
rw [@join_uncontractedListGet]
|
||
|
||
lemma normalOrder_timeOrder_ofFieldOpList_eq_not_haveEqTime_sub_inductive (φs : List 𝓕.FieldOp) :
|
||
𝓣(𝓝(ofFieldOpList φs)) =
|
||
(∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}), φsΛ.1.wickTerm)
|
||
+ ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||
sign φs ↑φsΛ • (φsΛ.1).timeContract *
|
||
(∑ φssucΛ : { φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ φssucΛ.HaveEqTime },
|
||
φssucΛ.1.wickTerm - 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))) := by
|
||
rw [normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty,
|
||
timeOrder_haveEqTime_split]
|
||
rw [add_sub_assoc]
|
||
congr 1
|
||
simp only [ne_eq, Algebra.smul_mul_assoc]
|
||
rw [← Finset.sum_sub_distrib]
|
||
congr 1
|
||
funext x
|
||
simp only
|
||
rw [← smul_sub, ← mul_sub]
|
||
|
||
lemma wicks_theorem_normal_order_empty : 𝓣(𝓝(ofFieldOpList [])) =
|
||
∑ (φsΛ : {φsΛ : WickContraction ([] : List 𝓕.FieldOp).length // ¬ HaveEqTime φsΛ}),
|
||
φsΛ.1.wickTerm := by
|
||
simp only [wickTerm]
|
||
let e2 : {φsΛ : WickContraction ([] : List 𝓕.FieldOp).length // ¬ HaveEqTime φsΛ} ≃ Unit :=
|
||
{
|
||
toFun := fun x => (),
|
||
invFun := fun x => ⟨empty, by simp⟩,
|
||
left_inv := by
|
||
intro a
|
||
simp only [List.length_nil]
|
||
apply Subtype.eq
|
||
apply Subtype.eq
|
||
simp only [empty]
|
||
ext i
|
||
simp only [Finset.not_mem_empty, false_iff]
|
||
by_contra hn
|
||
have h2 := a.1.2.1 i hn
|
||
rw [@Finset.card_eq_two] at h2
|
||
obtain ⟨a, b, ha, hb, hab⟩ := h2
|
||
exact Fin.elim0 a,
|
||
right_inv := by intro a; simp}
|
||
rw [← e2.symm.sum_comp]
|
||
simp only [Finset.univ_unique, PUnit.default_eq_unit, List.length_nil, Equiv.coe_fn_symm_mk,
|
||
sign_empty, timeContract_empty, OneMemClass.coe_one, one_smul, uncontractedListGet_empty,
|
||
one_mul, Finset.sum_const, Finset.card_singleton, e2]
|
||
have h1' : ofFieldOpList (𝓕 := 𝓕) [] = ofCrAnList [] := by rfl
|
||
rw [h1']
|
||
rw [normalOrder_ofCrAnList]
|
||
simp only [normalOrderSign_nil, normalOrderList_nil, one_smul]
|
||
rw [ofCrAnList, timeOrder_eq_ι_timeOrderF]
|
||
rw [timeOrderF_ofCrAnListF]
|
||
simp
|
||
|
||
/--For a list `φs` of `𝓕.FieldOp`, the normal-ordered version of Wick's theorem states that
|
||
|
||
`𝓣(𝓝(φs)) = ∑ φsΛ, φsΛ.wickTerm`
|
||
|
||
where the sum is over all Wick contraction `φsΛ` in which no two contracted elements
|
||
have the same time.
|
||
|
||
The proof of proceeds by induction on `φs`, with the base case `[]` holding by following
|
||
through definitions. and the inductive case holding as a result of
|
||
- `timeOrder_haveEqTime_split`
|
||
- `normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty`
|
||
- and the induction hypothesis on `𝓣(𝓝([φsΛ.1]ᵘᶜ))` for contractions `φsΛ` of `φs` which only
|
||
have equal time contractions and are non-empty.
|
||
-/
|
||
theorem wicks_theorem_normal_order : (φs : List 𝓕.FieldOp) →
|
||
𝓣(𝓝(ofFieldOpList φs)) =
|
||
∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}), φsΛ.1.wickTerm
|
||
| [] => wicks_theorem_normal_order_empty
|
||
| φ :: φs => by
|
||
rw [normalOrder_timeOrder_ofFieldOpList_eq_not_haveEqTime_sub_inductive]
|
||
simp only [Algebra.smul_mul_assoc, ne_eq, add_right_eq_self]
|
||
apply Finset.sum_eq_zero
|
||
intro φsΛ hφsΛ
|
||
simp only [smul_eq_zero]
|
||
right
|
||
have ih := wicks_theorem_normal_order [φsΛ.1]ᵘᶜ
|
||
rw [ih]
|
||
simp [wickTerm]
|
||
termination_by φs => φs.length
|
||
decreasing_by
|
||
simp only [uncontractedListGet, List.length_cons, List.length_map, gt_iff_lt]
|
||
rw [uncontractedList_length_eq_card]
|
||
have hc := uncontracted_card_eq_iff φsΛ.1
|
||
simp only [List.length_cons, φsΛ.2.2, iff_false] at hc
|
||
have hc' := uncontracted_card_le φsΛ.1
|
||
simp_all only [Algebra.smul_mul_assoc, List.length_cons, Finset.mem_univ, gt_iff_lt]
|
||
omega
|
||
|
||
end FieldOpAlgebra
|
||
end FieldSpecification
|