562 lines
24 KiB
Text
562 lines
24 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Mathematics.List.InsertionSort
|
||
import HepLean.PerturbationTheory.FieldSpecification.NormalOrder
|
||
/-!
|
||
|
||
# Time ordering of states
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
variable {𝓕 : FieldSpecification}
|
||
|
||
/-!
|
||
|
||
## Time ordering for states
|
||
|
||
-/
|
||
|
||
/-- The time ordering relation on states. We have that `timeOrderRel φ0 φ1` is true
|
||
if and only if `φ1` has a time less-then or equal to `φ0`, or `φ1` is a negative
|
||
asymptotic state, or `φ0` is a positive asymptotic state. -/
|
||
def timeOrderRel : 𝓕.States → 𝓕.States → Prop
|
||
| States.outAsymp _, _ => True
|
||
| States.position φ0, States.position φ1 => φ1.2 0 ≤ φ0.2 0
|
||
| States.position _, States.inAsymp _ => True
|
||
| States.position _, States.outAsymp _ => False
|
||
| States.inAsymp _, States.outAsymp _ => False
|
||
| States.inAsymp _, States.position _ => False
|
||
| States.inAsymp _, States.inAsymp _ => True
|
||
|
||
/-- The relation `timeOrderRel` is decidable, but not computablly so due to
|
||
`Real.decidableLE`. -/
|
||
noncomputable instance : (φ φ' : 𝓕.States) → Decidable (timeOrderRel φ φ')
|
||
| States.outAsymp _, _ => isTrue True.intro
|
||
| States.position φ0, States.position φ1 => inferInstanceAs (Decidable (φ1.2 0 ≤ φ0.2 0))
|
||
| States.position _, States.inAsymp _ => isTrue True.intro
|
||
| States.position _, States.outAsymp _ => isFalse (fun a => a)
|
||
| States.inAsymp _, States.outAsymp _ => isFalse (fun a => a)
|
||
| States.inAsymp _, States.position _ => isFalse (fun a => a)
|
||
| States.inAsymp _, States.inAsymp _ => isTrue True.intro
|
||
|
||
/-- Time ordering is total. -/
|
||
instance : IsTotal 𝓕.States 𝓕.timeOrderRel where
|
||
total a b := by
|
||
cases a <;> cases b <;>
|
||
simp only [or_self, or_false, or_true, timeOrderRel, Fin.isValue, implies_true, imp_self,
|
||
IsEmpty.forall_iff]
|
||
exact LinearOrder.le_total _ _
|
||
|
||
/-- Time ordering is transitive. -/
|
||
instance : IsTrans 𝓕.States 𝓕.timeOrderRel where
|
||
trans a b c := by
|
||
cases a <;> cases b <;> cases c <;>
|
||
simp only [timeOrderRel, Fin.isValue, implies_true, imp_self, IsEmpty.forall_iff]
|
||
exact fun h1 h2 => Preorder.le_trans _ _ _ h2 h1
|
||
|
||
noncomputable section
|
||
|
||
open FieldStatistic
|
||
open HepLean.List
|
||
|
||
/-- Given a list `φ :: φs` of states, the (zero-based) position of the state which is
|
||
of maximum time. For example
|
||
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return `1`.
|
||
This is defined for a list `φ :: φs` instead of `φs` to ensure that such a position exists.
|
||
-/
|
||
def maxTimeFieldPos (φ : 𝓕.States) (φs : List 𝓕.States) : ℕ :=
|
||
insertionSortMinPos timeOrderRel φ φs
|
||
|
||
lemma maxTimeFieldPos_lt_length (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||
maxTimeFieldPos φ φs < (φ :: φs).length := by
|
||
simp [maxTimeFieldPos]
|
||
|
||
/-- Given a list `φ :: φs` of states, the left-most state of maximum time, if there are more.
|
||
As an example:
|
||
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return `φ2(t = 5)`.
|
||
It is the state at the position `maxTimeFieldPos φ φs`.
|
||
-/
|
||
def maxTimeField (φ : 𝓕.States) (φs : List 𝓕.States) : 𝓕.States :=
|
||
insertionSortMin timeOrderRel φ φs
|
||
|
||
/-- Given a list `φ :: φs` of states, the list with the left-most state of maximum
|
||
time removed.
|
||
As an example:
|
||
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return
|
||
`[φ1(t = 4), φ3(t = 3), φ4(t = 5)]`.
|
||
-/
|
||
def eraseMaxTimeField (φ : 𝓕.States) (φs : List 𝓕.States) : List 𝓕.States :=
|
||
insertionSortDropMinPos timeOrderRel φ φs
|
||
|
||
@[simp]
|
||
lemma eraseMaxTimeField_length (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||
(eraseMaxTimeField φ φs).length = φs.length := by
|
||
simp [eraseMaxTimeField, insertionSortDropMinPos, eraseIdx_length']
|
||
|
||
lemma maxTimeFieldPos_lt_eraseMaxTimeField_length_succ (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||
maxTimeFieldPos φ φs < (eraseMaxTimeField φ φs).length.succ := by
|
||
simp only [eraseMaxTimeField_length, Nat.succ_eq_add_one]
|
||
exact maxTimeFieldPos_lt_length φ φs
|
||
|
||
/-- Given a list `φ :: φs` of states, the position of the left-most state of maximum
|
||
time as an eement of `Fin (eraseMaxTimeField φ φs).length.succ`.
|
||
As an example:
|
||
- for the list `[φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` this would return `⟨1,...⟩`.
|
||
-/
|
||
def maxTimeFieldPosFin (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||
Fin (eraseMaxTimeField φ φs).length.succ :=
|
||
insertionSortMinPosFin timeOrderRel φ φs
|
||
|
||
lemma lt_maxTimeFieldPosFin_not_timeOrder (φ : 𝓕.States) (φs : List 𝓕.States)
|
||
(i : Fin (eraseMaxTimeField φ φs).length)
|
||
(hi : (maxTimeFieldPosFin φ φs).succAbove i < maxTimeFieldPosFin φ φs) :
|
||
¬ timeOrderRel ((eraseMaxTimeField φ φs)[i.val]) (maxTimeField φ φs) := by
|
||
exact insertionSortMin_lt_mem_insertionSortDropMinPos_of_lt timeOrderRel φ φs i hi
|
||
|
||
lemma timeOrder_maxTimeField (φ : 𝓕.States) (φs : List 𝓕.States)
|
||
(i : Fin (eraseMaxTimeField φ φs).length) :
|
||
timeOrderRel (maxTimeField φ φs) ((eraseMaxTimeField φ φs)[i.val]) := by
|
||
exact insertionSortMin_lt_mem_insertionSortDropMinPos timeOrderRel φ φs _
|
||
|
||
/-- The sign associated with putting a list of states into time order (with
|
||
the state of greatest time to the left).
|
||
We pick up a minus sign for every fermion paired crossed. -/
|
||
def timeOrderSign (φs : List 𝓕.States) : ℂ :=
|
||
Wick.koszulSign 𝓕.statesStatistic 𝓕.timeOrderRel φs
|
||
|
||
@[simp]
|
||
lemma timeOrderSign_nil : timeOrderSign (𝓕 := 𝓕) [] = 1 := by
|
||
simp only [timeOrderSign]
|
||
rfl
|
||
|
||
lemma timeOrderSign_pair_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
|
||
timeOrderSign [φ, ψ] = 1 := by
|
||
simp only [timeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, ite_eq_left_iff,
|
||
ite_eq_right_iff, and_imp]
|
||
exact fun h' => False.elim (h' h)
|
||
|
||
lemma timeOrderSign_pair_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
|
||
timeOrderSign [φ, ψ] = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) := by
|
||
simp only [timeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, instCommGroup.eq_1]
|
||
rw [if_neg h]
|
||
simp [FieldStatistic.exchangeSign_eq_if]
|
||
|
||
lemma timerOrderSign_of_eraseMaxTimeField (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||
timeOrderSign (eraseMaxTimeField φ φs) = timeOrderSign (φ :: φs) *
|
||
𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ (φ :: φs).take (maxTimeFieldPos φ φs)) := by
|
||
rw [eraseMaxTimeField, insertionSortDropMinPos, timeOrderSign,
|
||
Wick.koszulSign_eraseIdx_insertionSortMinPos]
|
||
rw [← timeOrderSign, ← maxTimeField]
|
||
rfl
|
||
|
||
/-- The time ordering of a list of states. A schematic example is:
|
||
- `normalOrderList [φ1(t = 4), φ2(t = 5), φ3(t = 3), φ4(t = 5)]` is equal to
|
||
`[φ2(t = 5), φ4(t = 5), φ1(t = 4), φ3(t = 3)]` -/
|
||
def timeOrderList (φs : List 𝓕.States) : List 𝓕.States :=
|
||
List.insertionSort 𝓕.timeOrderRel φs
|
||
|
||
lemma timeOrderList_pair_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
|
||
timeOrderList [φ, ψ] = [φ, ψ] := by
|
||
simp only [timeOrderList, List.insertionSort, List.orderedInsert, ite_eq_left_iff,
|
||
List.cons.injEq, and_true]
|
||
exact fun h' => False.elim (h' h)
|
||
|
||
lemma timeOrderList_pair_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
|
||
timeOrderList [φ, ψ] = [ψ, φ] := by
|
||
simp only [timeOrderList, List.insertionSort, List.orderedInsert, ite_eq_right_iff,
|
||
List.cons.injEq, and_true]
|
||
exact fun h' => False.elim (h h')
|
||
|
||
@[simp]
|
||
lemma timeOrderList_nil : timeOrderList (𝓕 := 𝓕) [] = [] := by
|
||
simp [timeOrderList]
|
||
|
||
lemma timeOrderList_eq_maxTimeField_timeOrderList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||
timeOrderList (φ :: φs) = maxTimeField φ φs :: timeOrderList (eraseMaxTimeField φ φs) := by
|
||
exact insertionSort_eq_insertionSortMin_cons timeOrderRel φ φs
|
||
|
||
/-!
|
||
|
||
## Time ordering for CrAnStates
|
||
|
||
-/
|
||
|
||
/-!
|
||
|
||
## timeOrderRel
|
||
|
||
-/
|
||
|
||
/-- The time ordering relation on CrAnStates. -/
|
||
def crAnTimeOrderRel (a b : 𝓕.CrAnStates) : Prop := 𝓕.timeOrderRel a.1 b.1
|
||
|
||
/-- The relation `crAnTimeOrderRel` is decidable, but not computablly so due to
|
||
`Real.decidableLE`. -/
|
||
noncomputable instance (φ φ' : 𝓕.CrAnStates) : Decidable (crAnTimeOrderRel φ φ') :=
|
||
inferInstanceAs (Decidable (𝓕.timeOrderRel φ.1 φ'.1))
|
||
|
||
/-- Time ordering of `CrAnStates` is total. -/
|
||
instance : IsTotal 𝓕.CrAnStates 𝓕.crAnTimeOrderRel where
|
||
total a b := IsTotal.total (r := 𝓕.timeOrderRel) a.1 b.1
|
||
|
||
/-- Time ordering of `CrAnStates` is transitive. -/
|
||
instance : IsTrans 𝓕.CrAnStates 𝓕.crAnTimeOrderRel where
|
||
trans a b c := IsTrans.trans (r := 𝓕.timeOrderRel) a.1 b.1 c.1
|
||
|
||
@[simp]
|
||
lemma crAnTimeOrderRel_refl (φ : 𝓕.CrAnStates) : crAnTimeOrderRel φ φ := by
|
||
exact (IsTotal.to_isRefl (r := 𝓕.crAnTimeOrderRel)).refl φ
|
||
|
||
/-- The sign associated with putting a list of `CrAnStates` into time order (with
|
||
the state of greatest time to the left).
|
||
We pick up a minus sign for every fermion paired crossed. -/
|
||
def crAnTimeOrderSign (φs : List 𝓕.CrAnStates) : ℂ :=
|
||
Wick.koszulSign 𝓕.crAnStatistics 𝓕.crAnTimeOrderRel φs
|
||
|
||
@[simp]
|
||
lemma crAnTimeOrderSign_nil : crAnTimeOrderSign (𝓕 := 𝓕) [] = 1 := by
|
||
simp only [crAnTimeOrderSign]
|
||
rfl
|
||
|
||
lemma crAnTimeOrderSign_pair_ordered {φ ψ : 𝓕.CrAnStates} (h : crAnTimeOrderRel φ ψ) :
|
||
crAnTimeOrderSign [φ, ψ] = 1 := by
|
||
simp only [crAnTimeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, ite_eq_left_iff,
|
||
ite_eq_right_iff, and_imp]
|
||
exact fun h' => False.elim (h' h)
|
||
|
||
lemma crAnTimeOrderSign_pair_not_ordered {φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) :
|
||
crAnTimeOrderSign [φ, ψ] = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) := by
|
||
simp only [crAnTimeOrderSign, Wick.koszulSign, Wick.koszulSignInsert, mul_one, instCommGroup.eq_1]
|
||
rw [if_neg h]
|
||
simp [FieldStatistic.exchangeSign_eq_if]
|
||
|
||
lemma crAnTimeOrderSign_swap_eq_time_cons {φ ψ : 𝓕.CrAnStates}
|
||
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) (φs' : List 𝓕.CrAnStates) :
|
||
crAnTimeOrderSign (φ :: ψ :: φs') = crAnTimeOrderSign (ψ :: φ :: φs') := by
|
||
simp only [crAnTimeOrderSign, Wick.koszulSign, ← mul_assoc, mul_eq_mul_right_iff]
|
||
left
|
||
rw [mul_comm]
|
||
simp [Wick.koszulSignInsert, h1, h2]
|
||
|
||
lemma crAnTimeOrderSign_swap_eq_time {φ ψ : 𝓕.CrAnStates}
|
||
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) : (φs φs' : List 𝓕.CrAnStates) →
|
||
crAnTimeOrderSign (φs ++ φ :: ψ :: φs') = crAnTimeOrderSign (φs ++ ψ :: φ :: φs')
|
||
| [], φs' => by
|
||
simp only [crAnTimeOrderSign, List.nil_append]
|
||
exact crAnTimeOrderSign_swap_eq_time_cons h1 h2 φs'
|
||
| φ'' :: φs, φs' => by
|
||
simp only [crAnTimeOrderSign, Wick.koszulSign, List.append_eq]
|
||
rw [← crAnTimeOrderSign, ← crAnTimeOrderSign]
|
||
rw [crAnTimeOrderSign_swap_eq_time h1 h2]
|
||
congr 1
|
||
apply Wick.koszulSignInsert_eq_perm
|
||
exact List.Perm.append_left φs (List.Perm.swap ψ φ φs')
|
||
|
||
/-- Sort a list of `CrAnStates` based on `crAnTimeOrderRel`. -/
|
||
def crAnTimeOrderList (φs : List 𝓕.CrAnStates) : List 𝓕.CrAnStates :=
|
||
List.insertionSort 𝓕.crAnTimeOrderRel φs
|
||
|
||
@[simp]
|
||
lemma crAnTimeOrderList_nil : crAnTimeOrderList (𝓕 := 𝓕) [] = [] := by
|
||
simp [crAnTimeOrderList]
|
||
|
||
lemma crAnTimeOrderList_pair_ordered {φ ψ : 𝓕.CrAnStates} (h : crAnTimeOrderRel φ ψ) :
|
||
crAnTimeOrderList [φ, ψ] = [φ, ψ] := by
|
||
simp only [crAnTimeOrderList, List.insertionSort, List.orderedInsert, ite_eq_left_iff,
|
||
List.cons.injEq, and_true]
|
||
exact fun h' => False.elim (h' h)
|
||
|
||
lemma crAnTimeOrderList_pair_not_ordered {φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) :
|
||
crAnTimeOrderList [φ, ψ] = [ψ, φ] := by
|
||
simp only [crAnTimeOrderList, List.insertionSort, List.orderedInsert, ite_eq_right_iff,
|
||
List.cons.injEq, and_true]
|
||
exact fun h' => False.elim (h h')
|
||
|
||
lemma orderedInsert_swap_eq_time {φ ψ : 𝓕.CrAnStates}
|
||
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) (φs : List 𝓕.CrAnStates) :
|
||
List.orderedInsert crAnTimeOrderRel φ (List.orderedInsert crAnTimeOrderRel ψ φs) =
|
||
List.takeWhile (fun b => ¬ crAnTimeOrderRel ψ b) φs ++ φ :: ψ ::
|
||
List.dropWhile (fun b => ¬ crAnTimeOrderRel ψ b) φs := by
|
||
rw [List.orderedInsert_eq_take_drop crAnTimeOrderRel ψ φs]
|
||
simp only [decide_not]
|
||
rw [List.orderedInsert_eq_take_drop]
|
||
simp only [decide_not]
|
||
have h1 (b : 𝓕.CrAnStates) : (crAnTimeOrderRel φ b) ↔ (crAnTimeOrderRel ψ b) :=
|
||
Iff.intro (fun h => IsTrans.trans _ _ _ h2 h) (fun h => IsTrans.trans _ _ _ h1 h)
|
||
simp only [h1]
|
||
rw [List.takeWhile_append]
|
||
rw [List.takeWhile_takeWhile]
|
||
simp only [Bool.not_eq_eq_eq_not, Bool.not_true, decide_eq_false_iff_not, and_self, decide_not,
|
||
↓reduceIte, crAnTimeOrderRel_refl, decide_true, Bool.false_eq_true, not_false_eq_true,
|
||
List.takeWhile_cons_of_neg, List.append_nil, List.append_cancel_left_eq, List.cons.injEq,
|
||
true_and]
|
||
rw [List.dropWhile_append]
|
||
simp only [List.isEmpty_eq_true, List.dropWhile_eq_nil_iff, Bool.not_eq_eq_eq_not, Bool.not_true,
|
||
decide_eq_false_iff_not, crAnTimeOrderRel_refl, decide_true, Bool.false_eq_true,
|
||
not_false_eq_true, List.dropWhile_cons_of_neg, ite_eq_left_iff, not_forall, Classical.not_imp,
|
||
Decidable.not_not, List.append_left_eq_self, forall_exists_index, and_imp]
|
||
intro x hx hxψ
|
||
intro y hy
|
||
simpa using List.mem_takeWhile_imp hy
|
||
|
||
|
||
lemma orderedInsert_in_swap_eq_time {φ ψ φ': 𝓕.CrAnStates} (h1 : crAnTimeOrderRel φ ψ)
|
||
(h2 : crAnTimeOrderRel ψ φ) : (φs φs' : List 𝓕.CrAnStates) → ∃ l1 l2,
|
||
List.orderedInsert crAnTimeOrderRel φ' (φs ++ φ :: ψ :: φs') = l1 ++ φ :: ψ :: l2 ∧
|
||
List.orderedInsert crAnTimeOrderRel φ' (φs ++ ψ :: φ :: φs') = l1 ++ ψ :: φ :: l2
|
||
| [], φs' => by
|
||
have h1 (b : 𝓕.CrAnStates) : (crAnTimeOrderRel b φ) ↔ (crAnTimeOrderRel b ψ) :=
|
||
Iff.intro (fun h => IsTrans.trans _ _ _ h h1) (fun h => IsTrans.trans _ _ _ h h2)
|
||
by_cases h : crAnTimeOrderRel φ' φ
|
||
· simp only [List.orderedInsert, h, ↓reduceIte, ← h1 φ']
|
||
use [φ'], φs'
|
||
simp
|
||
· simp only [List.orderedInsert, h, ↓reduceIte, ← h1 φ']
|
||
use [], List.orderedInsert crAnTimeOrderRel φ' φs'
|
||
simp
|
||
| φ'' :: φs, φs' => by
|
||
obtain ⟨l1, l2, hl⟩ := orderedInsert_in_swap_eq_time (φ' := φ') h1 h2 φs φs'
|
||
simp only [List.orderedInsert, List.append_eq]
|
||
rw [hl.1, hl.2]
|
||
by_cases h : crAnTimeOrderRel φ' φ''
|
||
· simp only [h, ↓reduceIte]
|
||
use (φ' :: φ'' :: φs), φs'
|
||
simp
|
||
· simp only [h, ↓reduceIte]
|
||
use (φ'' :: l1), l2
|
||
simp
|
||
|
||
lemma crAnTimeOrderList_swap_eq_time {φ ψ : 𝓕.CrAnStates}
|
||
(h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) :
|
||
(φs φs' : List 𝓕.CrAnStates) →
|
||
∃ (l1 l2 : List 𝓕.CrAnStates),
|
||
crAnTimeOrderList (φs ++ φ :: ψ :: φs') = l1 ++ φ :: ψ :: l2 ∧
|
||
crAnTimeOrderList (φs ++ ψ :: φ :: φs') = l1 ++ ψ :: φ :: l2
|
||
| [], φs' => by
|
||
simp only [crAnTimeOrderList]
|
||
simp only [List.insertionSort]
|
||
use List.takeWhile (fun b => ¬ crAnTimeOrderRel ψ b) (List.insertionSort crAnTimeOrderRel φs'),
|
||
List.dropWhile (fun b => ¬ crAnTimeOrderRel ψ b) (List.insertionSort crAnTimeOrderRel φs')
|
||
apply And.intro
|
||
· exact orderedInsert_swap_eq_time h1 h2 _
|
||
· have h1' (b : 𝓕.CrAnStates) : (crAnTimeOrderRel φ b) ↔ (crAnTimeOrderRel ψ b) :=
|
||
Iff.intro (fun h => IsTrans.trans _ _ _ h2 h) (fun h => IsTrans.trans _ _ _ h1 h)
|
||
simp only [← h1', decide_not]
|
||
simpa using orderedInsert_swap_eq_time h2 h1 _
|
||
| φ'' :: φs, φs' => by
|
||
rw [crAnTimeOrderList, crAnTimeOrderList]
|
||
simp only [List.insertionSort, List.append_eq]
|
||
obtain ⟨l1, l2, hl⟩ := crAnTimeOrderList_swap_eq_time h1 h2 φs φs'
|
||
simp only [crAnTimeOrderList] at hl
|
||
rw [hl.1, hl.2]
|
||
obtain ⟨l1', l2', hl'⟩ := orderedInsert_in_swap_eq_time (φ' := φ'') h1 h2 l1 l2
|
||
rw [hl'.1, hl'.2]
|
||
use l1', l2'
|
||
|
||
/-!
|
||
|
||
## Relationship to sections
|
||
-/
|
||
|
||
lemma koszulSignInsert_crAnTimeOrderRel_crAnSection {φ : 𝓕.States} {ψ : 𝓕.CrAnStates}
|
||
(h : ψ.1 = φ) : {φs : List 𝓕.States} → (ψs : CrAnSection φs) →
|
||
Wick.koszulSignInsert 𝓕.crAnStatistics 𝓕.crAnTimeOrderRel ψ ψs.1 =
|
||
Wick.koszulSignInsert 𝓕.statesStatistic 𝓕.timeOrderRel φ φs
|
||
| [], ⟨[], h⟩ => by
|
||
simp [Wick.koszulSignInsert]
|
||
| φ' :: φs, ⟨ψ' :: ψs, h1⟩ => by
|
||
simp only [Wick.koszulSignInsert, crAnTimeOrderRel, h]
|
||
simp only [List.map_cons, List.cons.injEq] at h1
|
||
have hi := koszulSignInsert_crAnTimeOrderRel_crAnSection h (φs := φs) ⟨ψs, h1.2⟩
|
||
rw [hi]
|
||
congr
|
||
· exact h1.1
|
||
· simp only [crAnStatistics, crAnStatesToStates, Function.comp_apply]
|
||
congr
|
||
· simp only [crAnStatistics, crAnStatesToStates, Function.comp_apply]
|
||
congr
|
||
exact h1.1
|
||
|
||
@[simp]
|
||
lemma crAnTimeOrderSign_crAnSection : {φs : List 𝓕.States} → (ψs : CrAnSection φs) →
|
||
crAnTimeOrderSign ψs.1 = timeOrderSign φs
|
||
| [], ⟨[], h⟩ => by
|
||
simp
|
||
| φ :: φs, ⟨ψ :: ψs, h⟩ => by
|
||
simp only [crAnTimeOrderSign, Wick.koszulSign, timeOrderSign]
|
||
simp only [List.map_cons, List.cons.injEq] at h
|
||
congr 1
|
||
· rw [koszulSignInsert_crAnTimeOrderRel_crAnSection h.1 ⟨ψs, h.2⟩]
|
||
· exact crAnTimeOrderSign_crAnSection ⟨ψs, h.2⟩
|
||
|
||
lemma orderedInsert_crAnTimeOrderRel_crAnSection {φ : 𝓕.States} {ψ : 𝓕.CrAnStates}
|
||
(h : ψ.1 = φ) : {φs : List 𝓕.States} → (ψs : CrAnSection φs) →
|
||
(List.orderedInsert 𝓕.crAnTimeOrderRel ψ ψs.1).map 𝓕.crAnStatesToStates =
|
||
List.orderedInsert 𝓕.timeOrderRel φ φs
|
||
| [], ⟨[], _⟩ => by
|
||
simp only [List.orderedInsert, List.map_cons, List.map_nil, List.cons.injEq, and_true]
|
||
exact h
|
||
| φ' :: φs, ⟨ψ' :: ψs, h1⟩ => by
|
||
simp only [List.orderedInsert, crAnTimeOrderRel, h]
|
||
simp only [List.map_cons, List.cons.injEq] at h1
|
||
by_cases hr : timeOrderRel φ φ'
|
||
· simp only [hr, ↓reduceIte]
|
||
rw [← h1.1] at hr
|
||
simp only [crAnStatesToStates] at hr
|
||
simp only [hr, ↓reduceIte, List.map_cons, List.cons.injEq]
|
||
exact And.intro h (And.intro h1.1 h1.2)
|
||
· simp only [hr, ↓reduceIte]
|
||
rw [← h1.1] at hr
|
||
simp only [crAnStatesToStates] at hr
|
||
simp only [hr, ↓reduceIte, List.map_cons, List.cons.injEq]
|
||
apply And.intro h1.1
|
||
exact orderedInsert_crAnTimeOrderRel_crAnSection h ⟨ψs, h1.2⟩
|
||
|
||
lemma crAnTimeOrderList_crAnSection_is_crAnSection : {φs : List 𝓕.States} → (ψs : CrAnSection φs) →
|
||
(crAnTimeOrderList ψs.1).map 𝓕.crAnStatesToStates = timeOrderList φs
|
||
| [], ⟨[], h⟩ => by
|
||
simp
|
||
| φ :: φs, ⟨ψ :: ψs, h⟩ => by
|
||
simp only [crAnTimeOrderList, List.insertionSort, timeOrderList]
|
||
simp only [List.map_cons, List.cons.injEq] at h
|
||
exact orderedInsert_crAnTimeOrderRel_crAnSection h.1 ⟨(List.insertionSort crAnTimeOrderRel ψs),
|
||
crAnTimeOrderList_crAnSection_is_crAnSection ⟨ψs, h.2⟩⟩
|
||
|
||
/-- Time ordering of sections of a list of states. -/
|
||
def crAnSectionTimeOrder (φs : List 𝓕.States) (ψs : CrAnSection φs) :
|
||
CrAnSection (timeOrderList φs) :=
|
||
⟨crAnTimeOrderList ψs.1, crAnTimeOrderList_crAnSection_is_crAnSection ψs⟩
|
||
|
||
lemma orderedInsert_crAnTimeOrderRel_injective {ψ ψ' : 𝓕.CrAnStates} (h : ψ.1 = ψ'.1) :
|
||
{φs : List 𝓕.States} → (ψs ψs' : 𝓕.CrAnSection φs) →
|
||
(ho : List.orderedInsert crAnTimeOrderRel ψ ψs.1 =
|
||
List.orderedInsert crAnTimeOrderRel ψ' ψs'.1) → ψ = ψ' ∧ ψs = ψs'
|
||
| [], ⟨[], _⟩, ⟨[], _⟩, h => by
|
||
simp only [List.orderedInsert, List.cons.injEq, and_true] at h
|
||
simpa using h
|
||
| φ :: φs, ⟨ψ1 :: ψs, h1⟩, ⟨ψ1' :: ψs', h1'⟩, ho => by
|
||
simp only [List.map_cons, List.cons.injEq] at h1 h1'
|
||
have ih := orderedInsert_crAnTimeOrderRel_injective h ⟨ψs, h1.2⟩ ⟨ψs', h1'.2⟩
|
||
simp only [List.orderedInsert] at ho
|
||
by_cases hr : crAnTimeOrderRel ψ ψ1
|
||
· simp_all only [ite_true]
|
||
by_cases hr2 : crAnTimeOrderRel ψ' ψ1'
|
||
· simp_all
|
||
· simp only [crAnTimeOrderRel] at hr hr2
|
||
simp_all only
|
||
rw [crAnStatesToStates] at h1 h1'
|
||
rw [h1.1] at hr
|
||
rw [h1'.1] at hr2
|
||
exact False.elim (hr2 hr)
|
||
· simp_all only [ite_false]
|
||
by_cases hr2 : crAnTimeOrderRel ψ' ψ1'
|
||
· simp only [crAnTimeOrderRel] at hr hr2
|
||
simp_all only
|
||
rw [crAnStatesToStates] at h1 h1'
|
||
rw [h1.1] at hr
|
||
rw [h1'.1] at hr2
|
||
exact False.elim (hr hr2)
|
||
· simp only [hr2, ↓reduceIte, List.cons.injEq] at ho
|
||
have ih' := ih ho.2
|
||
simp_all only [and_self, implies_true, not_false_eq_true, true_and]
|
||
apply Subtype.ext
|
||
simp only [List.cons.injEq, true_and]
|
||
rw [Subtype.eq_iff] at ih'
|
||
exact ih'.2
|
||
|
||
lemma crAnSectionTimeOrder_injective : {φs : List 𝓕.States} →
|
||
Function.Injective (𝓕.crAnSectionTimeOrder φs)
|
||
| [], ⟨[], _⟩, ⟨[], _⟩ => by
|
||
simp
|
||
| φ :: φs, ⟨ψ :: ψs, h⟩, ⟨ψ' :: ψs', h'⟩ => by
|
||
intro h1
|
||
apply Subtype.ext
|
||
simp only [List.cons.injEq]
|
||
simp only [crAnSectionTimeOrder] at h1
|
||
rw [Subtype.eq_iff] at h1
|
||
simp only [crAnTimeOrderList, List.insertionSort] at h1
|
||
simp only [List.map_cons, List.cons.injEq] at h h'
|
||
rw [crAnStatesToStates] at h h'
|
||
have hin := orderedInsert_crAnTimeOrderRel_injective (by rw [h.1, h'.1])
|
||
(𝓕.crAnSectionTimeOrder φs ⟨ψs, h.2⟩)
|
||
(𝓕.crAnSectionTimeOrder φs ⟨ψs', h'.2⟩) h1
|
||
apply And.intro hin.1
|
||
have hl := crAnSectionTimeOrder_injective hin.2
|
||
rw [Subtype.ext_iff] at hl
|
||
simpa using hl
|
||
|
||
lemma crAnSectionTimeOrder_bijective (φs : List 𝓕.States) :
|
||
Function.Bijective (𝓕.crAnSectionTimeOrder φs) := by
|
||
rw [Fintype.bijective_iff_injective_and_card]
|
||
apply And.intro crAnSectionTimeOrder_injective
|
||
apply CrAnSection.card_perm_eq
|
||
simp only [timeOrderList]
|
||
exact List.Perm.symm (List.perm_insertionSort timeOrderRel φs)
|
||
|
||
lemma sum_crAnSections_timeOrder {φs : List 𝓕.States} [AddCommMonoid M]
|
||
(f : CrAnSection (timeOrderList φs) → M) : ∑ s, f s = ∑ s, f (𝓕.crAnSectionTimeOrder φs s) := by
|
||
erw [(Equiv.ofBijective _ (𝓕.crAnSectionTimeOrder_bijective φs)).sum_comp]
|
||
|
||
/-!
|
||
|
||
## normTimeOrderRel
|
||
|
||
-/
|
||
|
||
/-- The time ordering relation on `CrAnStates` such that if two CrAnStates have the same
|
||
time, we normal order them. -/
|
||
def normTimeOrderRel (a b : 𝓕.CrAnStates) : Prop :=
|
||
crAnTimeOrderRel a b ∧ (crAnTimeOrderRel b a → normalOrderRel a b)
|
||
|
||
/-- The relation `normTimeOrderRel` is decidable, but not computablly so due to
|
||
`Real.decidableLE`. -/
|
||
noncomputable instance (φ φ' : 𝓕.CrAnStates) : Decidable (normTimeOrderRel φ φ') :=
|
||
instDecidableAnd
|
||
|
||
/-- Norm-Time ordering of `CrAnStates` is total. -/
|
||
instance : IsTotal 𝓕.CrAnStates 𝓕.normTimeOrderRel where
|
||
total a b := by
|
||
simp only [normTimeOrderRel]
|
||
match IsTotal.total (r := 𝓕.crAnTimeOrderRel) a b,
|
||
IsTotal.total (r := 𝓕.normalOrderRel) a b with
|
||
| Or.inl h1, Or.inl h2 => simp [h1, h2]
|
||
| Or.inr h1, Or.inl h2 =>
|
||
simp only [h1, h2, imp_self, and_true, true_and]
|
||
by_cases hn : crAnTimeOrderRel a b
|
||
· simp [hn]
|
||
· simp [hn]
|
||
| Or.inl h1, Or.inr h2 =>
|
||
simp only [h1, true_and, h2, imp_self, and_true]
|
||
by_cases hn : crAnTimeOrderRel b a
|
||
· simp [hn]
|
||
· simp [hn]
|
||
| Or.inr h1, Or.inr h2 => simp [h1, h2]
|
||
|
||
/-- Norm-Time ordering of `CrAnStates` is transitive. -/
|
||
instance : IsTrans 𝓕.CrAnStates 𝓕.normTimeOrderRel where
|
||
trans a b c := by
|
||
intro h1 h2
|
||
simp_all only [normTimeOrderRel]
|
||
apply And.intro
|
||
· exact IsTrans.trans _ _ _ h1.1 h2.1
|
||
· intro hc
|
||
refine IsTrans.trans _ _ _ (h1.2 ?_) (h2.2 ?_)
|
||
· exact IsTrans.trans _ _ _ h2.1 hc
|
||
· exact IsTrans.trans _ _ _ hc h1.1
|
||
|
||
/-- The sign associated with putting a list of `CrAnStates` into normal-time order (with
|
||
the state of greatest time to the left).
|
||
We pick up a minus sign for every fermion paired crossed. -/
|
||
def normTimeOrderSign (φs : List 𝓕.CrAnStates) : ℂ :=
|
||
Wick.koszulSign 𝓕.crAnStatistics 𝓕.normTimeOrderRel φs
|
||
|
||
/-- Sort a list of `CrAnStates` based on `normTimeOrderRel`. -/
|
||
def normTimeOrderList (φs : List 𝓕.CrAnStates) : List 𝓕.CrAnStates :=
|
||
List.insertionSort 𝓕.normTimeOrderRel φs
|
||
|
||
end
|
||
end FieldSpecification
|