515 lines
20 KiB
Text
515 lines
20 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.Wick.Species
|
||
import HepLean.Lorentz.RealVector.Basic
|
||
import HepLean.Mathematics.Fin
|
||
import HepLean.SpaceTime.Basic
|
||
import HepLean.Mathematics.SuperAlgebra.Basic
|
||
import HepLean.Mathematics.List
|
||
import HepLean.Meta.Notes.Basic
|
||
import Init.Data.List.Sort.Basic
|
||
import Mathlib.Data.Fin.Tuple.Take
|
||
import HepLean.PerturbationTheory.Wick.Koszul.Grade
|
||
/-!
|
||
|
||
# Koszul signs and ordering for lists and algebras
|
||
|
||
-/
|
||
|
||
namespace Wick
|
||
|
||
noncomputable section
|
||
|
||
def ofList {I : Type} (l : List I) (x : ℂ) : FreeAlgebra ℂ I :=
|
||
FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x)
|
||
|
||
lemma ofList_pair {I : Type} (l r : List I) (x y : ℂ) :
|
||
ofList (l ++ r) (x * y) = ofList l x * ofList r y := by
|
||
simp only [ofList, ← map_mul, MonoidAlgebra.single_mul_single, EmbeddingLike.apply_eq_iff_eq]
|
||
rfl
|
||
|
||
lemma ofList_triple {I : Type} (la lb lc : List I) (xa xb xc : ℂ) :
|
||
ofList (la ++ lb ++ lc) (xa * xb * xc) = ofList la xa * ofList lb xb * ofList lc xc := by
|
||
rw [ofList_pair, ofList_pair]
|
||
|
||
lemma ofList_triple_assoc {I : Type} (la lb lc : List I) (xa xb xc : ℂ) :
|
||
ofList (la ++ (lb ++ lc)) (xa * (xb * xc)) = ofList la xa * ofList lb xb * ofList lc xc := by
|
||
rw [ofList_pair, ofList_pair]
|
||
exact Eq.symm (mul_assoc (ofList la xa) (ofList lb xb) (ofList lc xc))
|
||
|
||
lemma ofList_cons_eq_ofList {I : Type} (l : List I) (i : I) (x : ℂ) :
|
||
ofList (i :: l) x = ofList [i] 1 * ofList l x := by
|
||
simp only [ofList, ← map_mul, MonoidAlgebra.single_mul_single, one_mul,
|
||
EmbeddingLike.apply_eq_iff_eq]
|
||
rfl
|
||
|
||
lemma ofList_singleton {I : Type} (i : I) :
|
||
ofList [i] 1 = FreeAlgebra.ι ℂ i := by
|
||
simp only [ofList, FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
|
||
MonoidAlgebra.single, AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, one_smul]
|
||
rfl
|
||
|
||
lemma ofList_eq_smul_one {I : Type} (l : List I) (x : ℂ) :
|
||
ofList l x = x • ofList l 1 := by
|
||
simp only [ofList]
|
||
rw [← map_smul]
|
||
simp
|
||
|
||
lemma ofList_empty {I : Type} : ofList [] 1 = (1 : FreeAlgebra ℂ I) := by
|
||
simp only [ofList, EmbeddingLike.map_eq_one_iff]
|
||
rfl
|
||
|
||
lemma ofList_empty' {I : Type} : ofList [] x = x • (1 : FreeAlgebra ℂ I) := by
|
||
rw [ofList_eq_smul_one, ofList_empty]
|
||
|
||
|
||
lemma koszulOrder_ofList {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||
(l : List I) (x : ℂ) :
|
||
koszulOrder r q (ofList l x) = (koszulSign r q l) • ofList (List.insertionSort r l) x := by
|
||
rw [ofList]
|
||
rw [koszulOrder_single]
|
||
change ofList (List.insertionSort r l) _ = _
|
||
rw [ofList_eq_smul_one]
|
||
conv_rhs => rw [ofList_eq_smul_one]
|
||
rw [smul_smul]
|
||
|
||
lemma ofList_insertionSort_eq_koszulOrder {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
|
||
(l : List I) (x : ℂ) :
|
||
ofList (List.insertionSort r l) x = (koszulSign r q l) • koszulOrder r q (ofList l x) := by
|
||
rw [koszulOrder_ofList]
|
||
rw [smul_smul]
|
||
rw [koszulSign_mul_self]
|
||
simp
|
||
|
||
def freeAlgebraMap {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
|
||
FreeAlgebra ℂ I →ₐ[ℂ] FreeAlgebra ℂ (Σ i, f i) :=
|
||
FreeAlgebra.lift ℂ fun i => ∑ (j : f i), FreeAlgebra.ι ℂ ⟨i, j⟩
|
||
|
||
lemma freeAlgebraMap_ι {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) :
|
||
freeAlgebraMap f (FreeAlgebra.ι ℂ i) = ∑ (b : f i), FreeAlgebra.ι ℂ ⟨i, b⟩ := by
|
||
simp [freeAlgebraMap]
|
||
|
||
def ofListM {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (l : List I) (x : ℂ) :
|
||
FreeAlgebra ℂ (Σ i, f i) :=
|
||
freeAlgebraMap f (ofList l x)
|
||
|
||
lemma ofListM_empty {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
|
||
ofListM f [] 1 = 1 := by
|
||
simp only [ofListM, EmbeddingLike.map_eq_one_iff]
|
||
rw [ofList_empty]
|
||
exact map_one (freeAlgebraMap f)
|
||
|
||
lemma ofListM_empty_smul {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) :
|
||
ofListM f [] x = x • 1 := by
|
||
simp only [ofListM, EmbeddingLike.map_eq_one_iff]
|
||
rw [ofList_eq_smul_one]
|
||
rw [ofList_empty]
|
||
simp
|
||
|
||
lemma ofListM_cons {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (r : List I) (x : ℂ) :
|
||
ofListM f (i :: r) x = (∑ j : f i, FreeAlgebra.ι ℂ ⟨i, j⟩) * (ofListM f r x) := by
|
||
rw [ofListM, ofList_cons_eq_ofList, ofList_singleton, map_mul]
|
||
conv_lhs => lhs; rw [freeAlgebraMap]
|
||
rw [ofListM]
|
||
simp
|
||
|
||
lemma ofListM_singleton {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (x : ℂ) :
|
||
ofListM f [i] x = ∑ j : f i, x • FreeAlgebra.ι ℂ ⟨i, j⟩ := by
|
||
simp only [ofListM]
|
||
rw [ofList_eq_smul_one, ofList_singleton, map_smul]
|
||
rw [freeAlgebraMap_ι]
|
||
rw [Finset.smul_sum]
|
||
|
||
lemma ofListM_singleton_one {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) :
|
||
ofListM f [i] 1 = ∑ j : f i, FreeAlgebra.ι ℂ ⟨i, j⟩ := by
|
||
simp only [ofListM]
|
||
rw [ofList_eq_smul_one, ofList_singleton, map_smul]
|
||
rw [freeAlgebraMap_ι]
|
||
rw [Finset.smul_sum]
|
||
simp
|
||
|
||
lemma ofListM_cons_eq_ofListM {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (r : List I) (x : ℂ) :
|
||
ofListM f (i :: r) x = ofListM f [i] 1 * ofListM f r x := by
|
||
rw [ofListM_cons, ofListM_singleton]
|
||
simp only [one_smul]
|
||
|
||
def liftM {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
|
||
(l : List I) → (a : Π i, f (l.get i)) → List (Σ i, f i)
|
||
| [], _ => []
|
||
| i :: l, a => ⟨i, a ⟨0, Nat.zero_lt_succ l.length⟩⟩ :: liftM f l (fun i => a (Fin.succ i))
|
||
|
||
@[simp]
|
||
lemma liftM_length {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r : List I) (a : Π i, f (r.get i)) :
|
||
(liftM f r a).length = r.length := by
|
||
induction r with
|
||
| nil => rfl
|
||
| cons i r ih =>
|
||
simp only [liftM, List.length_cons, Fin.zero_eta, add_left_inj]
|
||
rw [ih]
|
||
|
||
lemma liftM_get {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r : List I) (a : Π i, f (r.get i)) :
|
||
(liftM f r a).get = (fun i => ⟨r.get i, a i⟩) ∘ Fin.cast (by simp) := by
|
||
induction r with
|
||
| nil =>
|
||
funext i
|
||
exact Fin.elim0 i
|
||
| cons i l ih =>
|
||
simp only [liftM, List.length_cons, Fin.zero_eta, List.get_eq_getElem]
|
||
funext x
|
||
match x with
|
||
| ⟨0, h⟩ => rfl
|
||
| ⟨x + 1, h⟩ =>
|
||
simp only [List.length_cons, List.get_eq_getElem, Prod.mk.eta, List.getElem_cons_succ,
|
||
Function.comp_apply, Fin.cast_mk]
|
||
change (liftM f _ _).get _ = _
|
||
rw [ih]
|
||
simp
|
||
|
||
def liftMCongrEquiv {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r0 : I) (r : List I) (n : Fin (r0 :: r).length) :
|
||
(Π i, f ((r0 :: r).get i)) ≃ f ((r0 :: r).get n) × Π i, f ((r0 :: r).get (n.succAbove i)) :=
|
||
(Fin.insertNthEquiv _ _).symm
|
||
|
||
lemma ofListM_expand {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) :
|
||
(l : List I) → ofListM f l x = ∑ (a : Π i, f (l.get i)), ofList (liftM f l a) x
|
||
| [] => by
|
||
simp only [ofListM, List.length_nil, List.get_eq_getElem, Finset.univ_unique, liftM,
|
||
Finset.sum_const, Finset.card_singleton, one_smul]
|
||
rw [ofList_eq_smul_one, map_smul, ofList_empty, ofList_eq_smul_one, ofList_empty, map_one]
|
||
| i :: l => by
|
||
rw [ofListM_cons, ofListM_expand f x l]
|
||
let e1 : f i × (Π j, f (l.get j)) ≃ (Π j, f ((i :: l).get j)) :=
|
||
(Fin.insertNthEquiv (fun j => f ((i :: l).get j)) 0)
|
||
rw [← e1.sum_comp (α := FreeAlgebra ℂ _)]
|
||
erw [Finset.sum_product]
|
||
rw [Finset.sum_mul]
|
||
conv_lhs =>
|
||
rhs
|
||
intro n
|
||
rw [Finset.mul_sum]
|
||
congr
|
||
funext j
|
||
congr
|
||
funext n
|
||
rw [← ofList_singleton, ← ofList_pair, one_mul]
|
||
rfl
|
||
|
||
|
||
@[simp]
|
||
lemma liftM_grade {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → Fin 2) (r : List I) (a : Π i, f (r.get i)) :
|
||
grade (fun i => q i.fst) (liftM f r a) = 1 ↔ grade q r = 1 := by
|
||
induction r with
|
||
| nil =>
|
||
simp [liftM]
|
||
| cons i r ih =>
|
||
simp only [grade, Fin.isValue, ite_eq_right_iff, zero_ne_one, imp_false]
|
||
have ih' := ih (fun i => a i.succ)
|
||
have h1 : grade (fun i => q i.fst) (liftM f r fun i => a i.succ) = grade q r := by
|
||
by_cases h : grade q r = 1
|
||
· simp_all
|
||
· have h0 : grade q r = 0 := by
|
||
omega
|
||
rw [h0] at ih'
|
||
simp only [Fin.isValue, zero_ne_one, iff_false] at ih'
|
||
have h0' : grade (fun i => q i.fst) (liftM f r fun i => a i.succ) = 0 := by
|
||
omega
|
||
rw [h0, h0']
|
||
rw [h1]
|
||
|
||
@[simp]
|
||
lemma liftM_grade_take {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → Fin 2) : (r : List I) → (a : Π i, f (r.get i)) → (n : ℕ) →
|
||
grade (fun i => q i.fst) (List.take n (liftM f r a)) = grade q (List.take n r)
|
||
| [], _, _ => by
|
||
simp [liftM]
|
||
| i :: r, a, 0 => by
|
||
simp
|
||
| i :: r, a, Nat.succ n => by
|
||
simp only [grade, Fin.isValue]
|
||
have ih : grade (fun i => q i.fst) (List.take n (liftM f r fun i => a i.succ)) = grade q (List.take n r) := by
|
||
refine (liftM_grade_take q r (fun i => a i.succ) n)
|
||
rw [ih]
|
||
|
||
open HepLean.List
|
||
|
||
def listMEraseEquiv {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → Fin 2) {r0 : I} {r : List I} (n : Fin (r0 :: r).length) :
|
||
(Π (i :Fin ((r0 :: r).eraseIdx ↑n).length) , f (((r0 :: r).eraseIdx ↑n).get i))
|
||
≃ Π (i : Fin r.length), f ((r0 :: r).get (n.succAbove i)) :=
|
||
Equiv.piCongr (Fin.castOrderIso (by rw [eraseIdx_cons_length])).toEquiv
|
||
fun x => Equiv.cast (congrArg f (by
|
||
rw [HepLean.List.eraseIdx_get]
|
||
simp
|
||
congr 1
|
||
simp [Fin.succAbove]
|
||
sorry
|
||
|
||
))
|
||
/-
|
||
lemma liftM_eraseIdx {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → Fin 2) (r0 : I): (r : List I) → (n : Fin (r0 :: r).length) → (a : Π i, f ((r0 :: r).get i)) →
|
||
(liftM f (r0 :: r) a).eraseIdx ↑n = liftM f (List.eraseIdx (r0 :: r) n) ((listMEraseEquiv q n).symm a)
|
||
| r, ⟨0, h⟩, a => by
|
||
simp [List.eraseIdx]
|
||
rfl
|
||
| r, ⟨n + 1, h⟩, a => by
|
||
have hf : (r.eraseIdx n).length + 1 = r.length := by
|
||
rw [List.length_eraseIdx]
|
||
simp at h
|
||
simp [h]
|
||
omega
|
||
have hn : n < (r.eraseIdx n).length + 1 := by
|
||
simp at h
|
||
rw [hf]
|
||
exact h
|
||
simp [liftM]
|
||
apply And.intro
|
||
· refine eq_cast_iff_heq.mpr ?left.a
|
||
simp [Fin.cast]
|
||
rw [Fin.succAbove]
|
||
simp
|
||
rw [if_pos]
|
||
simp
|
||
simp
|
||
refine Fin.add_one_pos ↑n ?left.a.hc.h
|
||
simp at h
|
||
rw [Fin.lt_def]
|
||
conv_rhs => simp
|
||
rw [hf]
|
||
simp
|
||
rw [Nat.mod_eq_of_modEq rfl (Nat.le.step h)]
|
||
exact h
|
||
· have hl := liftM_eraseIdx q r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ (fun i => a i.succ)
|
||
rw [hl]
|
||
congr
|
||
funext i
|
||
rw [Equiv.apply_eq_iff_eq_symm_apply]
|
||
simp
|
||
refine eq_cast_iff_heq.mpr ?right.e_a.h.a
|
||
congr
|
||
rw [Fin.ext_iff]
|
||
simp [Fin.succAbove]
|
||
simp [Fin.lt_def]
|
||
rw [@Fin.val_add_one]
|
||
simp [hn]
|
||
rw [Nat.mod_eq_of_lt hn]
|
||
rw [Nat.mod_eq_of_lt]
|
||
have hnot : ¬ ↑n = Fin.last ((r.eraseIdx n).length + 1) := by
|
||
rw [Fin.ext_iff]
|
||
simp
|
||
rw [Nat.mod_eq_of_lt]
|
||
omega
|
||
exact Nat.lt_add_right 1 hn
|
||
simp [hnot]
|
||
by_cases hi : i.val < n
|
||
· simp [hi]
|
||
· simp [hi]
|
||
· exact Nat.lt_add_right 1 hn
|
||
|
||
|
||
-/
|
||
|
||
|
||
lemma koszulSignInsert_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||
(l : List I) (a : (j : Fin l.length) → f (l.get j)) (x : (i : I) × f i):
|
||
koszulSignInsert (fun i j => le1 i.fst j.fst) (fun i => q i.fst) x
|
||
(liftM f l a) =
|
||
koszulSignInsert le1 q x.1 l := by
|
||
induction l with
|
||
| nil => simp [koszulSignInsert]
|
||
| cons b l ih =>
|
||
simp [koszulSignInsert]
|
||
rw [ih]
|
||
|
||
lemma koszulSign_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||
(l : List I) (a : (i : Fin l.length) → f (l.get i)) :
|
||
koszulSign (fun i j => le1 i.fst j.fst) (fun i => q i.fst) (liftM f l a) =
|
||
koszulSign le1 q l := by
|
||
induction l with
|
||
| nil => simp [koszulSign]
|
||
| cons i l ih =>
|
||
simp [koszulSign, liftM]
|
||
rw [ih]
|
||
congr 1
|
||
rw [koszulSignInsert_liftM]
|
||
|
||
lemma insertionSortEquiv_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(le1 : I → I → Prop) [DecidableRel le1](l : List I) (a : (i : Fin l.length) → f (l.get i)) :
|
||
(HepLean.List.insertionSortEquiv (fun i j => le1 i.fst j.fst) (liftM f l a)) =
|
||
(Fin.castOrderIso (by simp)).toEquiv.trans ((HepLean.List.insertionSortEquiv le1 l).trans
|
||
(Fin.castOrderIso (by simp)).toEquiv) := by
|
||
induction l with
|
||
| nil =>
|
||
simp [liftM, HepLean.List.insertionSortEquiv]
|
||
| cons i l ih =>
|
||
simp only [liftM, List.length_cons, Fin.zero_eta, List.insertionSort]
|
||
conv_lhs => simp [HepLean.List.insertionSortEquiv]
|
||
have h1 (l' : List (Σ i, f i)) :
|
||
(HepLean.List.insertEquiv (fun i j => le1 i.fst j.fst) ⟨i, a ⟨0, by simp⟩⟩ l') =
|
||
(Fin.castOrderIso (by simp)).toEquiv.trans
|
||
((HepLean.List.insertEquiv le1 i (List.map (fun i => i.1) l')).trans
|
||
(Fin.castOrderIso (by simp [List.orderedInsert_length])).toEquiv) := by
|
||
induction l' with
|
||
| nil =>
|
||
simp only [List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta, List.length_singleton,
|
||
List.orderedInsert, HepLean.List.insertEquiv, Fin.castOrderIso_refl,
|
||
OrderIso.refl_toEquiv, Equiv.trans_refl]
|
||
rfl
|
||
| cons j l' ih' =>
|
||
by_cases hr : (fun (i j : Σ i, f i) => le1 i.fst j.fst) ⟨i, a ⟨0, by simp⟩⟩ j
|
||
· rw [HepLean.List.insertEquiv_cons_pos]
|
||
· erw [HepLean.List.insertEquiv_cons_pos]
|
||
· rfl
|
||
· exact hr
|
||
· exact hr
|
||
· rw [HepLean.List.insertEquiv_cons_neg]
|
||
· erw [HepLean.List.insertEquiv_cons_neg]
|
||
· simp only [List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta,
|
||
List.orderedInsert, Prod.mk.eta, Fin.mk_one]
|
||
erw [ih']
|
||
ext x
|
||
simp only [Prod.mk.eta, List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta,
|
||
HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one,
|
||
HepLean.Fin.equivCons_castOrderIso, Equiv.trans_apply, RelIso.coe_fn_toEquiv,
|
||
Fin.castOrderIso_apply, Fin.cast_trans, Fin.coe_cast]
|
||
congr 2
|
||
match x with
|
||
| ⟨0, h⟩ => rfl
|
||
| ⟨1, h⟩ => rfl
|
||
| ⟨Nat.succ (Nat.succ x), h⟩ => rfl
|
||
· exact hr
|
||
· exact hr
|
||
erw [h1]
|
||
rw [ih]
|
||
simp only [HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one,
|
||
HepLean.Fin.equivCons_castOrderIso, List.length_cons, Nat.add_zero, Nat.zero_eq,
|
||
Fin.zero_eta]
|
||
ext x
|
||
conv_rhs => simp [HepLean.List.insertionSortEquiv]
|
||
simp only [Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans,
|
||
Fin.coe_cast]
|
||
have h2' (i : Σ i, f i) (l' : List ( Σ i, f i)) :
|
||
List.map (fun i => i.1) (List.orderedInsert (fun i j => le1 i.fst j.fst) i l') =
|
||
List.orderedInsert le1 i.1 (List.map (fun i => i.1) l') := by
|
||
induction l' with
|
||
| nil =>
|
||
simp [HepLean.List.insertEquiv]
|
||
| cons j l' ih' =>
|
||
by_cases hij : (fun i j => le1 i.fst j.fst) i j
|
||
· rw [List.orderedInsert_of_le]
|
||
· erw [List.orderedInsert_of_le]
|
||
· simp
|
||
· exact hij
|
||
· exact hij
|
||
· simp only [List.orderedInsert, hij, ↓reduceIte, List.unzip_snd, List.map_cons]
|
||
have hn : ¬ le1 i.1 j.1 := hij
|
||
simp only [hn, ↓reduceIte, List.cons.injEq, true_and]
|
||
simpa using ih'
|
||
have h2 (l' : List ( Σ i, f i)) :
|
||
List.map (fun i => i.1) (List.insertionSort (fun i j => le1 i.fst j.fst) l') =
|
||
List.insertionSort le1 (List.map (fun i => i.1) l') := by
|
||
induction l' with
|
||
| nil =>
|
||
simp [HepLean.List.insertEquiv]
|
||
| cons i l' ih' =>
|
||
simp only [List.insertionSort, List.unzip_snd]
|
||
simp only [List.unzip_snd] at h2'
|
||
rw [h2']
|
||
congr
|
||
rw [HepLean.List.insertEquiv_congr _ _ _ (h2 _)]
|
||
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||
Fin.cast_trans, Fin.coe_cast]
|
||
have h3 : (List.insertionSort le1 (List.map (fun i => i.1) (liftM f l (fun i => a i.succ)))) =
|
||
List.insertionSort le1 l := by
|
||
congr
|
||
have h3' (l : List I) (a : Π (i : Fin l.length), f (l.get i)) :
|
||
List.map (fun i => i.1) (liftM f l a) = l := by
|
||
induction l with
|
||
| nil => rfl
|
||
| cons i l ih' =>
|
||
simp only [liftM, List.length_cons, Fin.zero_eta, Prod.mk.eta,
|
||
List.unzip_snd, List.map_cons, List.cons.injEq, true_and]
|
||
simpa using ih' _
|
||
rw [h3']
|
||
rw [HepLean.List.insertEquiv_congr _ _ _ h3]
|
||
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||
Fin.cast_trans, Fin.cast_eq_self, Fin.coe_cast]
|
||
|
||
lemma insertionSort_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(le1 : I → I → Prop) [DecidableRel le1](l : List I) (a : (i : Fin l.length) → f (l.get i))
|
||
:
|
||
List.insertionSort (fun i j => le1 i.fst j.fst) (liftM f l a) =
|
||
liftM f (List.insertionSort le1 l)
|
||
(Equiv.piCongr (HepLean.List.insertionSortEquiv le1 l) (fun i => (Equiv.cast (by
|
||
congr 1
|
||
rw [← HepLean.List.insertionSortEquiv_get]
|
||
simp))) a) := by
|
||
let l1 := List.insertionSort (fun i j => le1 i.fst j.fst) (liftM f l a)
|
||
let l2 := liftM f (List.insertionSort le1 l)
|
||
(Equiv.piCongr (HepLean.List.insertionSortEquiv le1 l) (fun i => (Equiv.cast (by
|
||
congr 1
|
||
rw [← HepLean.List.insertionSortEquiv_get]
|
||
simp))) a)
|
||
change l1 = l2
|
||
have hlen : l1.length = l2.length := by
|
||
simp [l1, l2]
|
||
have hget : l1.get = l2.get ∘ Fin.cast hlen := by
|
||
rw [← HepLean.List.insertionSortEquiv_get]
|
||
rw [liftM_get, liftM_get]
|
||
funext i
|
||
rw [insertionSortEquiv_liftM]
|
||
simp only [ Function.comp_apply, Equiv.symm_trans_apply,
|
||
OrderIso.toEquiv_symm, Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||
Fin.cast_trans, Fin.cast_eq_self, id_eq, eq_mpr_eq_cast, Fin.coe_cast, Sigma.mk.inj_iff]
|
||
apply And.intro
|
||
· have h1 := congrFun (HepLean.List.insertionSortEquiv_get (r := le1) l) (Fin.cast (by simp) i)
|
||
rw [← h1]
|
||
simp
|
||
· simp [Equiv.piCongr]
|
||
exact (cast_heq _ _).symm
|
||
apply List.ext_get hlen
|
||
rw [hget]
|
||
simp
|
||
|
||
lemma koszulOrder_ofListM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||
(l : List I) (x : ℂ) : koszulOrder (fun i j => le1 i.1 j.1) (fun i => q i.fst) (ofListM f l x) =
|
||
freeAlgebraMap f (koszulOrder le1 q (ofList l x)) := by
|
||
rw [koszulOrder_ofList]
|
||
rw [map_smul]
|
||
change _ = _ • ofListM _ _ _
|
||
rw [ofListM_expand]
|
||
rw [map_sum]
|
||
conv_lhs =>
|
||
rhs
|
||
intro a
|
||
rw [koszulOrder_ofList]
|
||
rw [koszulSign_liftM]
|
||
rw [← Finset.smul_sum]
|
||
apply congrArg
|
||
conv_lhs =>
|
||
rhs
|
||
intro n
|
||
rw [insertionSort_liftM]
|
||
rw [ofListM_expand]
|
||
refine Fintype.sum_equiv ((HepLean.List.insertionSortEquiv le1 l).piCongr fun i => Equiv.cast ?_) _ _ ?_
|
||
congr 1
|
||
· rw [← HepLean.List.insertionSortEquiv_get]
|
||
simp
|
||
· intro x
|
||
rfl
|
||
|
||
lemma koszulOrder_ofListM_eq_ofListM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
|
||
(l : List I) (x : ℂ) : koszulOrder (fun i j => le1 i.1 j.1) (fun i => q i.fst) (ofListM f l x) =
|
||
koszulSign le1 q l • ofListM f (List.insertionSort le1 l) x := by
|
||
rw [koszulOrder_ofListM, koszulOrder_ofList, map_smul]
|
||
rfl
|
||
|
||
end
|
||
end Wick
|