160 lines
5.8 KiB
Text
160 lines
5.8 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdAssoc
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.Congr
|
||
/-!
|
||
|
||
## Metrics as complex Lorentz tensors
|
||
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
noncomputable section
|
||
|
||
namespace complexLorentzTensor
|
||
open Fermion
|
||
|
||
/-!
|
||
|
||
## Definitions.
|
||
|
||
-/
|
||
|
||
/-- The unit `δᵢⁱ` as a complex Lorentz tensor. -/
|
||
def coContrUnit := (TensorTree.constTwoNodeE complexLorentzTensor Color.down Color.up
|
||
Lorentz.coContrUnit).tensor
|
||
|
||
/-- The unit `δⁱᵢ` as a complex Lorentz tensor. -/
|
||
def contrCoUnit := (TensorTree.constTwoNodeE complexLorentzTensor Color.up Color.down
|
||
Lorentz.contrCoUnit).tensor
|
||
|
||
/-- The unit `δₐᵃ` as a complex Lorentz tensor. -/
|
||
def altLeftLeftUnit := (TensorTree.constTwoNodeE complexLorentzTensor Color.downL Color.upL
|
||
Fermion.altLeftLeftUnit).tensor
|
||
|
||
/-- The unit `δᵃₐ` as a complex Lorentz tensor. -/
|
||
def leftAltLeftUnit := (TensorTree.constTwoNodeE complexLorentzTensor Color.upL Color.downL
|
||
Fermion.leftAltLeftUnit).tensor
|
||
|
||
/-- The unit `δ_{dot a}^{dot a}` as a complex Lorentz tensor. -/
|
||
def altRightRightUnit := (TensorTree.constTwoNodeE complexLorentzTensor Color.downR Color.upR
|
||
Fermion.altRightRightUnit).tensor
|
||
|
||
/-- The unit `δ^{dot a}_{dot a}` as a complex Lorentz tensor. -/
|
||
def rightAltRightUnit := (TensorTree.constTwoNodeE complexLorentzTensor Color.upR Color.downR
|
||
Fermion.rightAltRightUnit).tensor
|
||
|
||
/-!
|
||
|
||
## Notation
|
||
|
||
-/
|
||
|
||
/-- The unit `δᵢⁱ` as a complex Lorentz tensor. -/
|
||
scoped[complexLorentzTensor] notation "δ'" => coContrUnit
|
||
|
||
/-- The unit `δⁱᵢ` as a complex Lorentz tensor. -/
|
||
scoped[complexLorentzTensor] notation "δ" => contrCoUnit
|
||
|
||
/-- The unit `δₐᵃ` as a complex Lorentz tensor. -/
|
||
scoped[complexLorentzTensor] notation "δL'" => altLeftLeftUnit
|
||
|
||
/-- The unit `δᵃₐ` as a complex Lorentz tensor. -/
|
||
scoped[complexLorentzTensor] notation "δL" => leftAltLeftUnit
|
||
|
||
/-- The unit `δ_{dot a}^{dot a}` as a complex Lorentz tensor. -/
|
||
scoped[complexLorentzTensor] notation "δR'" => altRightRightUnit
|
||
|
||
/-- The unit `δ^{dot a}_{dot a}` as a complex Lorentz tensor. -/
|
||
scoped[complexLorentzTensor] notation "δR" => rightAltRightUnit
|
||
|
||
/-!
|
||
|
||
## Tensor nodes.
|
||
|
||
-/
|
||
|
||
/-- The definitional tensor node relation for `coContrUnit`. -/
|
||
lemma tensorNode_coContrUnit : {δ' | μ ν}ᵀ.tensor = (TensorTree.constTwoNodeE complexLorentzTensor
|
||
Color.down Color.up Lorentz.coContrUnit).tensor:= by
|
||
rfl
|
||
|
||
/-- The definitional tensor node relation for `contrCoUnit`. -/
|
||
lemma tensorNode_contrCoUnit: {δ | μ ν}ᵀ.tensor = (TensorTree.constTwoNodeE complexLorentzTensor
|
||
Color.up Color.down Lorentz.contrCoUnit).tensor := by
|
||
rfl
|
||
|
||
/-- The definitional tensor node relation for `altLeftLeftUnit`. -/
|
||
lemma tensorNode_altLeftLeftUnit : {δL' | μ ν}ᵀ.tensor = (TensorTree.constTwoNodeE
|
||
complexLorentzTensor Color.downL Color.upL Fermion.altLeftLeftUnit).tensor := by
|
||
rfl
|
||
|
||
/-- The definitional tensor node relation for `leftAltLeftUnit`. -/
|
||
lemma tensorNode_leftAltLeftUnit : {δL | μ ν}ᵀ.tensor = (TensorTree.constTwoNodeE
|
||
complexLorentzTensor Color.upL Color.downL Fermion.leftAltLeftUnit).tensor := by
|
||
rfl
|
||
|
||
/-- The definitional tensor node relation for `altRightRightUnit`. -/
|
||
lemma tensorNode_altRightRightUnit: {δR' | μ ν}ᵀ.tensor = (TensorTree.constTwoNodeE
|
||
complexLorentzTensor Color.downR Color.upR Fermion.altRightRightUnit).tensor := by
|
||
rfl
|
||
|
||
/-- The definitional tensor node relation for `rightAltRightUnit`. -/
|
||
lemma tensorNode_rightAltRightUnit: {δR | μ ν}ᵀ.tensor = (TensorTree.constTwoNodeE
|
||
complexLorentzTensor Color.upR Color.downR Fermion.rightAltRightUnit).tensor := by
|
||
rfl
|
||
|
||
/-!
|
||
|
||
## Group actions
|
||
|
||
-/
|
||
|
||
/-- The tensor `coContrUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||
lemma action_coContrUnit (g : SL(2,ℂ)) : {g •ₐ δ' | μ ν}ᵀ.tensor = {δ' | μ ν}ᵀ.tensor := by
|
||
rw [tensorNode_coContrUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||
rfl
|
||
|
||
/-- The tensor `contrCoUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||
lemma action_contrCoUnit (g : SL(2,ℂ)) : {g •ₐ δ | μ ν}ᵀ.tensor = {δ | μ ν}ᵀ.tensor := by
|
||
rw [tensorNode_contrCoUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||
rfl
|
||
|
||
/-- The tensor `altLeftLeftUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||
lemma action_altLeftLeftUnit (g : SL(2,ℂ)) : {g •ₐ δL' | μ ν}ᵀ.tensor = {δL' | μ ν}ᵀ.tensor := by
|
||
rw [tensorNode_altLeftLeftUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||
rfl
|
||
|
||
/-- The tensor `leftAltLeftUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||
lemma action_leftAltLeftUnit (g : SL(2,ℂ)) : {g •ₐ δL | μ ν}ᵀ.tensor = {δL | μ ν}ᵀ.tensor := by
|
||
rw [tensorNode_leftAltLeftUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||
rfl
|
||
|
||
/-- The tensor `altRightRightUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||
lemma action_altRightRightUnit (g : SL(2,ℂ)) : {g •ₐ δR' | μ ν}ᵀ.tensor = {δR' | μ ν}ᵀ.tensor := by
|
||
rw [tensorNode_altRightRightUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||
rfl
|
||
|
||
/-- The tensor `rightAltRightUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||
lemma action_rightAltRightUnit (g : SL(2,ℂ)) : {g •ₐ δR | μ ν}ᵀ.tensor = {δR | μ ν}ᵀ.tensor := by
|
||
rw [tensorNode_rightAltRightUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||
rfl
|
||
|
||
end complexLorentzTensor
|