PhysLean/HepLean/Lorentz/ComplexTensor/Units/Symm.lean
2024-11-09 17:46:52 +00:00

63 lines
1.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Lorentz.ComplexTensor.Metrics.Basis
import HepLean.Lorentz.ComplexTensor.Units.Basic
import HepLean.Lorentz.ComplexTensor.Basis
/-!
## Symmetry lemmas relating to units
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace complexLorentzTensor
/-!
## Symmetry properties
-/
informal_lemma coContrUnit_symm where
math :≈ "Swapping indices of coContrUnit returns contrCoUnit, i.e. {δ' | μ ν = δ | ν μ}.ᵀ"
deps :≈ [``coContrUnit, ``contrCoUnit]
informal_lemma contrCoUnit_symm where
math :≈ "Swapping indices of contrCoUnit returns coContrUnit, i.e. {δ | μ ν = δ' | ν μ}ᵀ"
deps :≈ [``contrCoUnit, ``coContrUnit]
informal_lemma altLeftLeftUnit_symm where
math :≈ "Swapping indices of altLeftLeftUnit returns leftAltLeftUnit, i.e.
{δL' | α α' = δL | α' α}ᵀ"
deps :≈ [``altLeftLeftUnit, ``leftAltLeftUnit]
informal_lemma leftAltLeftUnit_symm where
math :≈ "Swapping indices of leftAltLeftUnit returns altLeftLeftUnit, i.e.
{δL | α α' = δL' | α' α}ᵀ"
deps :≈ [``leftAltLeftUnit, ``altLeftLeftUnit]
informal_lemma altRightRightUnit_symm where
math :≈ "Swapping indices of altRightRightUnit returns rightAltRightUnit, i.e.
{δR' | β β' = δR | β' β}ᵀ"
deps :≈ [``altRightRightUnit, ``rightAltRightUnit]
informal_lemma rightAltRightUnit_symm where
math :≈ "Swapping indices of rightAltRightUnit returns altRightRightUnit, i.e.
{δR | β β' = δR' | β' β}ᵀ"
deps :≈ [``rightAltRightUnit, ``altRightRightUnit]
end complexLorentzTensor