286 lines
11 KiB
Text
286 lines
11 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.CategoryTheory.Category.Basic
|
||
import Mathlib.CategoryTheory.Types
|
||
import Mathlib.CategoryTheory.Monoidal.Category
|
||
import Mathlib.CategoryTheory.Comma.Over
|
||
import Mathlib.CategoryTheory.Core
|
||
import HepLean.SpaceTime.WeylFermion.Basic
|
||
import HepLean.SpaceTime.LorentzVector.Complex
|
||
/-!
|
||
|
||
## Category over color
|
||
|
||
-/
|
||
|
||
namespace IndexNotation
|
||
open CategoryTheory
|
||
|
||
/-- The core of the category of Types over C. -/
|
||
def OverColor (C : Type) := CategoryTheory.Core (CategoryTheory.Over C)
|
||
|
||
/-- The instance of `OverColor C` as a groupoid. -/
|
||
instance (C : Type) : Groupoid (OverColor C) := coreCategory
|
||
|
||
namespace OverColor
|
||
|
||
namespace Hom
|
||
|
||
variable {C : Type} {f g h : OverColor C}
|
||
|
||
/-- Given a hom in `OverColor C` the underlying equivalence between types. -/
|
||
def toEquiv (m : f ⟶ g) : f.left ≃ g.left where
|
||
toFun := m.hom.left
|
||
invFun := m.inv.left
|
||
left_inv := by
|
||
simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.hom_inv_id)
|
||
right_inv := by
|
||
simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.inv_hom_id)
|
||
|
||
@[simp]
|
||
lemma toEquiv_comp (m : f ⟶ g) (n : g ⟶ h) : toEquiv (m ≫ n) = (toEquiv m).trans (toEquiv n) := by
|
||
ext x
|
||
simp [toEquiv]
|
||
rfl
|
||
|
||
lemma toEquiv_symm_apply (m : f ⟶ g) (i : g.left) :
|
||
f.hom ((toEquiv m).symm i) = g.hom i := by
|
||
simpa [toEquiv, types_comp] using congrFun m.inv.w i
|
||
|
||
lemma toEquiv_comp_hom (m : f ⟶ g) : g.hom ∘ (toEquiv m) = f.hom := by
|
||
ext x
|
||
simpa [types_comp, toEquiv] using congrFun m.hom.w x
|
||
|
||
end Hom
|
||
|
||
instance (C : Type) : MonoidalCategoryStruct (OverColor C) where
|
||
tensorObj f g := Over.mk (Sum.elim f.hom g.hom)
|
||
tensorUnit := Over.mk Empty.elim
|
||
whiskerLeft X Y1 Y2 m := Over.isoMk (Equiv.sumCongr (Equiv.refl X.left) (Hom.toEquiv m)).toIso
|
||
(by
|
||
ext x
|
||
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
|
||
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
|
||
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
|
||
rfl)
|
||
whiskerRight m X := Over.isoMk (Equiv.sumCongr (Hom.toEquiv m) (Equiv.refl X.left)).toIso
|
||
(by
|
||
ext x
|
||
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
|
||
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
|
||
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
|
||
rfl)
|
||
associator X Y Z := {
|
||
hom := Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
|
||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Functor.const_obj_obj, Equiv.sumAssoc,
|
||
Equiv.toIso_hom, Equiv.coe_fn_mk, types_comp]
|
||
ext x
|
||
simp only [Function.comp_apply]
|
||
cases x with
|
||
| inl val =>
|
||
cases val with
|
||
| inl val_1 => simp_all only [Sum.elim_inl]
|
||
| inr val_2 => simp_all only [Sum.elim_inl, Sum.elim_inr, Function.comp_apply]
|
||
| inr val_1 => simp_all only [Sum.elim_inr, Function.comp_apply]),
|
||
inv := (Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
|
||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Functor.const_obj_obj, Equiv.sumAssoc,
|
||
Equiv.toIso_hom, Equiv.coe_fn_mk, types_comp]
|
||
ext x
|
||
simp only [Function.comp_apply]
|
||
cases x with
|
||
| inl val =>
|
||
cases val with
|
||
| inl val_1 => simp_all only [Sum.elim_inl]
|
||
| inr val_2 => simp_all only [Sum.elim_inl, Sum.elim_inr, Function.comp_apply]
|
||
| inr val_1 => simp_all only [Sum.elim_inr, Function.comp_apply])).symm,
|
||
hom_inv_id := by
|
||
apply CategoryTheory.Iso.ext
|
||
erw [CategoryTheory.Iso.trans_hom]
|
||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||
rfl,
|
||
inv_hom_id := by
|
||
apply CategoryTheory.Iso.ext
|
||
erw [CategoryTheory.Iso.trans_hom]
|
||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.inv_hom_id]
|
||
rfl}
|
||
leftUnitor X := {
|
||
hom := Over.isoMk (Equiv.emptySum Empty X.left).toIso
|
||
inv := (Over.isoMk (Equiv.emptySum Empty X.left).toIso).symm
|
||
hom_inv_id := by
|
||
apply CategoryTheory.Iso.ext
|
||
erw [CategoryTheory.Iso.trans_hom]
|
||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||
rfl,
|
||
inv_hom_id := by
|
||
apply CategoryTheory.Iso.ext
|
||
erw [CategoryTheory.Iso.trans_hom]}
|
||
rightUnitor X := {
|
||
hom := Over.isoMk (Equiv.sumEmpty X.left Empty).toIso
|
||
inv := (Over.isoMk (Equiv.sumEmpty X.left Empty).toIso).symm
|
||
hom_inv_id := by
|
||
apply CategoryTheory.Iso.ext
|
||
erw [CategoryTheory.Iso.trans_hom]
|
||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||
rfl,
|
||
inv_hom_id := by
|
||
apply CategoryTheory.Iso.ext
|
||
erw [CategoryTheory.Iso.trans_hom]}
|
||
|
||
end OverColor
|
||
|
||
end IndexNotation
|
||
|
||
namespace Fermion
|
||
|
||
noncomputable section
|
||
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
|
||
/-- The colors associated with complex representations of SL(2, ℂ) of intrest to physics. -/
|
||
inductive Color
|
||
| upL : Color
|
||
| downL : Color
|
||
| upR : Color
|
||
| downR : Color
|
||
| up : Color
|
||
| down : Color
|
||
|
||
/-- The corresponding representations associated with a color. -/
|
||
def colorToRep (c : Color) : Rep ℂ SL(2, ℂ) :=
|
||
match c with
|
||
| Color.upL => altLeftHanded
|
||
| Color.downL => leftHanded
|
||
| Color.upR => altRightHanded
|
||
| Color.downR => rightHanded
|
||
| Color.up => Lorentz.complexContr
|
||
| Color.down => Lorentz.complexCo
|
||
|
||
/-- The linear equivalence between `colorToRep c1` and `colorToRep c2` when `c1 = c2`. -/
|
||
def colorToRepCongr {c1 c2 : Color} (h : c1 = c2) : colorToRep c1 ≃ₗ[ℂ] colorToRep c2 where
|
||
toFun := Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)
|
||
invFun := (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)).symm
|
||
map_add' x y := by
|
||
subst h
|
||
rfl
|
||
map_smul' x y := by
|
||
subst h
|
||
rfl
|
||
left_inv x := Equiv.symm_apply_apply (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)) x
|
||
right_inv x := Equiv.apply_symm_apply (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)) x
|
||
|
||
lemma colorToRepCongr_comm_ρ {c1 c2 : Color} (h : c1 = c2) (M : SL(2, ℂ)) (x : (colorToRep c1)) :
|
||
(colorToRepCongr h) ((colorToRep c1).ρ M x) = (colorToRep c2).ρ M ((colorToRepCongr h) x) := by
|
||
subst h
|
||
rfl
|
||
|
||
namespace colorFun
|
||
|
||
/-- Given a object in `OverColor Color` the correpsonding tensor product of representations. -/
|
||
def obj' (f : OverColor Color) : Rep ℂ SL(2, ℂ) := Rep.of {
|
||
toFun := fun M => PiTensorProduct.map (fun x => (colorToRep (f.hom x)).ρ M),
|
||
map_one' := by
|
||
simp
|
||
map_mul' := fun M N => by
|
||
simp only [CategoryTheory.Functor.id_obj, _root_.map_mul]
|
||
ext x : 2
|
||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.map_tprod, LinearMap.mul_apply]}
|
||
|
||
lemma obj'_ρ (f : OverColor Color) (M : SL(2, ℂ)) : (obj' f).ρ M =
|
||
PiTensorProduct.map (fun x => (colorToRep (f.hom x)).ρ M) := rfl
|
||
|
||
lemma obj'_ρ_tprod (f : OverColor Color) (M : SL(2, ℂ))
|
||
(x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) :
|
||
(obj' f).ρ M ((PiTensorProduct.tprod ℂ) x) =
|
||
PiTensorProduct.tprod ℂ (fun i => (colorToRep (f.hom i)).ρ M (x i)) := by
|
||
rw [obj'_ρ]
|
||
change (PiTensorProduct.map fun x => (colorToRep (f.hom x)).ρ M) ((PiTensorProduct.tprod ℂ) x) =
|
||
(PiTensorProduct.tprod ℂ) fun i => ((colorToRep (f.hom i)).ρ M) (x i)
|
||
rw [PiTensorProduct.map_tprod]
|
||
|
||
/-- Given a morphism in `OverColor Color` the corresopnding linear equivalence between `obj' _`
|
||
induced by reindexing. -/
|
||
def mapToLinearEquiv' {f g : OverColor Color} (m : f ⟶ g) : (obj' f).V ≃ₗ[ℂ] (obj' g).V :=
|
||
(PiTensorProduct.reindex ℂ (fun x => colorToRep (f.hom x)) (OverColor.Hom.toEquiv m)).trans
|
||
(PiTensorProduct.congr (fun i => colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i)))
|
||
|
||
lemma mapToLinearEquiv'_tprod {f g : OverColor Color} (m : f ⟶ g)
|
||
(x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) :
|
||
mapToLinearEquiv' m (PiTensorProduct.tprod ℂ x) =
|
||
PiTensorProduct.tprod ℂ (fun i => (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i))
|
||
(x ((OverColor.Hom.toEquiv m).symm i))) := by
|
||
rw [mapToLinearEquiv']
|
||
simp only [CategoryTheory.Functor.id_obj, LinearEquiv.trans_apply]
|
||
change (PiTensorProduct.congr fun i => colorToRepCongr _)
|
||
((PiTensorProduct.reindex ℂ (fun x => CoeSort.coe (colorToRep (f.hom x)))
|
||
(OverColor.Hom.toEquiv m)) ((PiTensorProduct.tprod ℂ) x)) = _
|
||
rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod]
|
||
rfl
|
||
|
||
/-- Given a morphism in `OverColor Color` the corresopnding map of representations induced by
|
||
reindexing. -/
|
||
def map' {f g : OverColor Color} (m : f ⟶ g) : obj' f ⟶ obj' g where
|
||
hom := (mapToLinearEquiv' m).toLinearMap
|
||
comm M := by
|
||
ext x : 2
|
||
refine PiTensorProduct.induction_on' x ?_ (by
|
||
intro x y hx hy
|
||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||
Function.comp_apply, hy])
|
||
intro r x
|
||
simp only [CategoryTheory.Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod,
|
||
_root_.map_smul, ModuleCat.coe_comp, Function.comp_apply]
|
||
apply congrArg
|
||
change (mapToLinearEquiv' m) (((obj' f).ρ M) ((PiTensorProduct.tprod ℂ) x)) =
|
||
((obj' g).ρ M) ((mapToLinearEquiv' m) ((PiTensorProduct.tprod ℂ) x))
|
||
rw [mapToLinearEquiv'_tprod, obj'_ρ_tprod]
|
||
erw [mapToLinearEquiv'_tprod, obj'_ρ_tprod]
|
||
apply congrArg
|
||
funext i
|
||
rw [colorToRepCongr_comm_ρ]
|
||
|
||
end colorFun
|
||
|
||
/-- The functor between `OverColor Color` and `Rep ℂ SL(2, ℂ)` taking a map of colors
|
||
to the corresponding tensor product representation. -/
|
||
def colorFun : OverColor Color ⥤ Rep ℂ SL(2, ℂ) where
|
||
obj := colorFun.obj'
|
||
map := colorFun.map'
|
||
map_id f := by
|
||
ext x
|
||
refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by
|
||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||
Function.comp_apply, hy])
|
||
simp only [CategoryTheory.Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod,
|
||
_root_.map_smul, Action.id_hom, ModuleCat.id_apply]
|
||
apply congrArg
|
||
erw [colorFun.mapToLinearEquiv'_tprod]
|
||
exact congrArg _ (funext (fun i => rfl))
|
||
map_comp {X Y Z} f g := by
|
||
ext x
|
||
refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by
|
||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||
Function.comp_apply, hy])
|
||
simp only [Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod, _root_.map_smul,
|
||
Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply]
|
||
apply congrArg
|
||
rw [colorFun.map', colorFun.map', colorFun.map']
|
||
change (colorFun.mapToLinearEquiv' (CategoryTheory.CategoryStruct.comp f g))
|
||
((PiTensorProduct.tprod ℂ) x) =
|
||
(colorFun.mapToLinearEquiv' g) ((colorFun.mapToLinearEquiv' f) ((PiTensorProduct.tprod ℂ) x))
|
||
rw [colorFun.mapToLinearEquiv'_tprod, colorFun.mapToLinearEquiv'_tprod]
|
||
erw [colorFun.mapToLinearEquiv'_tprod]
|
||
refine congrArg _ (funext (fun i => ?_))
|
||
simp only [colorToRepCongr, Function.comp_apply, Equiv.cast_symm, LinearEquiv.coe_mk,
|
||
Equiv.cast_apply, cast_cast, cast_inj]
|
||
rfl
|
||
|
||
end
|
||
end Fermion
|