440 lines
18 KiB
Text
440 lines
18 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.FieldOpAlgebra.NormalOrder.Basic
|
||
/-!
|
||
|
||
# Basic properties of normal ordering
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
open FieldOpFreeAlgebra
|
||
open HepLean.List
|
||
open FieldStatistic
|
||
|
||
namespace FieldOpAlgebra
|
||
variable {𝓕 : FieldSpecification}
|
||
|
||
/-!
|
||
|
||
## Properties of normal ordering.
|
||
|
||
-/
|
||
|
||
lemma normalOrder_eq_ι_normalOrderF (a : 𝓕.FieldOpFreeAlgebra) :
|
||
𝓝(ι a) = ι 𝓝ᶠ(a) := rfl
|
||
|
||
lemma normalOrder_ofCrAnList (φs : List 𝓕.CrAnFieldOp) :
|
||
𝓝(ofCrAnList φs) = normalOrderSign φs • ofCrAnList (normalOrderList φs) := by
|
||
rw [ofCrAnList, normalOrder_eq_ι_normalOrderF, normalOrderF_ofCrAnListF]
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma normalOrder_one_eq_one : normalOrder (𝓕 := 𝓕) 1 = 1 := by
|
||
have h1 : 1 = ofCrAnList (𝓕 := 𝓕) [] := by simp [ofCrAnList]
|
||
rw [h1]
|
||
rw [normalOrder_ofCrAnList]
|
||
simp
|
||
|
||
@[simp]
|
||
lemma normalOrder_ofFieldOpList_nil : normalOrder (𝓕 := 𝓕) (ofFieldOpList []) = 1 := by
|
||
rw [ofFieldOpList]
|
||
rw [normalOrder_eq_ι_normalOrderF]
|
||
simp only [ofFieldOpListF_nil]
|
||
change normalOrder (𝓕 := 𝓕) 1 = _
|
||
simp
|
||
|
||
@[simp]
|
||
lemma normalOrder_ofCrAnList_nil : normalOrder (𝓕 := 𝓕) (ofCrAnList []) = 1 := by
|
||
rw [normalOrder_ofCrAnList]
|
||
simp only [normalOrderSign_nil, normalOrderList_nil, one_smul]
|
||
rfl
|
||
|
||
lemma ofCrAnList_eq_normalOrder (φs : List 𝓕.CrAnFieldOp) :
|
||
ofCrAnList (normalOrderList φs) = normalOrderSign φs • 𝓝(ofCrAnList φs) := by
|
||
rw [normalOrder_ofCrAnList, smul_smul, normalOrderSign, Wick.koszulSign_mul_self,
|
||
one_smul]
|
||
|
||
lemma normalOrder_normalOrder_mid (a b c : 𝓕.FieldOpAlgebra) :
|
||
𝓝(a * b * c) = 𝓝(a * 𝓝(b) * c) := by
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
obtain ⟨c, rfl⟩ := ι_surjective c
|
||
rw [normalOrder_eq_ι_normalOrderF]
|
||
simp only [← map_mul]
|
||
rw [normalOrder_eq_ι_normalOrderF]
|
||
rw [normalOrderF_normalOrderF_mid]
|
||
rfl
|
||
|
||
lemma normalOrder_normalOrder_left (a b : 𝓕.FieldOpAlgebra) :
|
||
𝓝(a * b) = 𝓝(𝓝(a) * b) := by
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
rw [normalOrder_eq_ι_normalOrderF]
|
||
simp only [← map_mul]
|
||
rw [normalOrder_eq_ι_normalOrderF]
|
||
rw [normalOrderF_normalOrderF_left]
|
||
rfl
|
||
|
||
lemma normalOrder_normalOrder_right (a b : 𝓕.FieldOpAlgebra) :
|
||
𝓝(a * b) = 𝓝(a * 𝓝(b)) := by
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
rw [normalOrder_eq_ι_normalOrderF]
|
||
simp only [← map_mul]
|
||
rw [normalOrder_eq_ι_normalOrderF]
|
||
rw [normalOrderF_normalOrderF_right]
|
||
rfl
|
||
|
||
lemma normalOrder_normalOrder (a : 𝓕.FieldOpAlgebra) : 𝓝(𝓝(a)) = 𝓝(a) := by
|
||
trans 𝓝(𝓝(a) * 1)
|
||
· simp
|
||
· rw [← normalOrder_normalOrder_left]
|
||
simp
|
||
|
||
/-!
|
||
|
||
## mul anpart and crpart
|
||
-/
|
||
|
||
lemma normalOrder_mul_anPart (φ : 𝓕.FieldOp) (a : 𝓕.FieldOpAlgebra) :
|
||
𝓝(a * anPart φ) = 𝓝(a) * anPart φ := by
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
rw [anPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_mul_anPartF]
|
||
rfl
|
||
|
||
lemma crPart_mul_normalOrder (φ : 𝓕.FieldOp) (a : 𝓕.FieldOpAlgebra) :
|
||
𝓝(crPart φ * a) = crPart φ * 𝓝(a) := by
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
rw [crPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_crPartF_mul]
|
||
rfl
|
||
|
||
/-!
|
||
|
||
### Normal order and super commutes
|
||
|
||
-/
|
||
|
||
/-- For a field specification `𝓕`, and `a` and `b` in `𝓕.FieldOpAlgebra` the normal ordering
|
||
of the super commutator of `a` and `b` vanishes, i.e. `𝓝([a,b]ₛ) = 0`. -/
|
||
@[simp]
|
||
lemma normalOrder_superCommute_eq_zero (a b : 𝓕.FieldOpAlgebra) :
|
||
𝓝([a, b]ₛ) = 0 := by
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
rw [superCommute_eq_ι_superCommuteF, normalOrder_eq_ι_normalOrderF]
|
||
simp
|
||
|
||
@[simp]
|
||
lemma normalOrder_superCommute_left_eq_zero (a b c: 𝓕.FieldOpAlgebra) :
|
||
𝓝([a, b]ₛ * c) = 0 := by
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
obtain ⟨c, rfl⟩ := ι_surjective c
|
||
rw [superCommute_eq_ι_superCommuteF, ← map_mul, normalOrder_eq_ι_normalOrderF]
|
||
simp
|
||
|
||
@[simp]
|
||
lemma normalOrder_superCommute_right_eq_zero (a b c: 𝓕.FieldOpAlgebra) :
|
||
𝓝(c * [a, b]ₛ) = 0 := by
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
obtain ⟨c, rfl⟩ := ι_surjective c
|
||
rw [superCommute_eq_ι_superCommuteF, ← map_mul, normalOrder_eq_ι_normalOrderF]
|
||
simp
|
||
|
||
@[simp]
|
||
lemma normalOrder_superCommute_mid_eq_zero (a b c d : 𝓕.FieldOpAlgebra) :
|
||
𝓝(a * [c, d]ₛ * b) = 0 := by
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
obtain ⟨c, rfl⟩ := ι_surjective c
|
||
obtain ⟨d, rfl⟩ := ι_surjective d
|
||
rw [superCommute_eq_ι_superCommuteF, ← map_mul, ← map_mul, normalOrder_eq_ι_normalOrderF]
|
||
simp
|
||
|
||
/-!
|
||
|
||
### Swapping terms in a normal order.
|
||
|
||
-/
|
||
|
||
lemma normalOrder_ofFieldOp_ofFieldOp_swap (φ φ' : 𝓕.FieldOp) :
|
||
𝓝(ofFieldOp φ * ofFieldOp φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝(ofFieldOp φ' * ofFieldOp φ) := by
|
||
rw [ofFieldOp_mul_ofFieldOp_eq_superCommute]
|
||
simp
|
||
|
||
lemma normalOrder_ofCrAnOp_ofCrAnList (φ : 𝓕.CrAnFieldOp)
|
||
(φs : List 𝓕.CrAnFieldOp) : 𝓝(ofCrAnOp φ * ofCrAnList φs) =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • 𝓝(ofCrAnList φs * ofCrAnOp φ) := by
|
||
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommute]
|
||
simp
|
||
|
||
lemma normalOrder_ofCrAnOp_ofFieldOpList_swap (φ : 𝓕.CrAnFieldOp) (φ' : List 𝓕.FieldOp) :
|
||
𝓝(ofCrAnOp φ * ofFieldOpList φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||
𝓝(ofFieldOpList φ' * ofCrAnOp φ) := by
|
||
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofFieldOpList_eq_superCommute]
|
||
simp
|
||
|
||
lemma normalOrder_anPart_ofFieldOpList_swap (φ : 𝓕.FieldOp) (φ' : List 𝓕.FieldOp) :
|
||
𝓝(anPart φ * ofFieldOpList φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝(ofFieldOpList φ' * anPart φ) := by
|
||
match φ with
|
||
| .inAsymp φ =>
|
||
simp
|
||
| .position φ =>
|
||
simp only [anPart_position, instCommGroup.eq_1]
|
||
rw [normalOrder_ofCrAnOp_ofFieldOpList_swap]
|
||
rfl
|
||
| .outAsymp φ =>
|
||
simp only [anPart_posAsymp, instCommGroup.eq_1]
|
||
rw [normalOrder_ofCrAnOp_ofFieldOpList_swap]
|
||
rfl
|
||
|
||
lemma normalOrder_ofFieldOpList_anPart_swap (φ : 𝓕.FieldOp) (φ' : List 𝓕.FieldOp) :
|
||
𝓝(ofFieldOpList φ' * anPart φ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝(anPart φ * ofFieldOpList φ') := by
|
||
rw [normalOrder_anPart_ofFieldOpList_swap]
|
||
simp [smul_smul, FieldStatistic.exchangeSign_mul_self]
|
||
|
||
lemma normalOrder_ofFieldOpList_mul_anPart_swap (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||
𝓝(ofFieldOpList φs) * anPart φ = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • 𝓝(anPart φ * ofFieldOpList φs) := by
|
||
rw [← normalOrder_mul_anPart]
|
||
rw [normalOrder_ofFieldOpList_anPart_swap]
|
||
|
||
lemma anPart_mul_normalOrder_ofFieldOpList_eq_superCommute (φ : 𝓕.FieldOp)
|
||
(φs' : List 𝓕.FieldOp) : anPart φ * 𝓝(ofFieldOpList φs') =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝(ofFieldOpList φs' * anPart φ) +
|
||
[anPart φ, 𝓝(ofFieldOpList φs')]ₛ := by
|
||
rw [anPart, ofFieldOpList, normalOrder_eq_ι_normalOrderF, ← map_mul]
|
||
rw [anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
|
||
simp only [instCommGroup.eq_1, map_add, map_smul]
|
||
rfl
|
||
|
||
/-!
|
||
|
||
## Super commutators with a normal ordered term as sums
|
||
|
||
-/
|
||
|
||
/--
|
||
For a field specification `𝓕`, an element `φ` of `𝓕.CrAnFieldOp`, a list `φs` of `𝓕.CrAnFieldOp`,
|
||
the following relation holds
|
||
|
||
`[φ, 𝓝(φ₀…φₙ)]ₛ = ∑ i, 𝓢(φ, φ₀…φᵢ₋₁) • [φ, φᵢ]ₛ * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`.
|
||
|
||
The proof of this result ultimately goes as follows
|
||
- The definition of `normalOrder` is used to rewrite `𝓝(φ₀…φₙ)` as a scalar multiple of
|
||
a `ofCrAnList φsn` where `φsn` is the normal ordering of `φ₀…φₙ`.
|
||
- `superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum` is used to rewrite the super commutator of `φ`
|
||
(considered as a list with one element) with
|
||
`ofCrAnList φsn` as a sum of super commutators, one for each element of `φsn`.
|
||
- The fact that super-commutators are in the center of `𝓕.FieldOpAlgebra` is used to rearrange
|
||
terms.
|
||
- Properties of ordered lists, and `normalOrderSign_eraseIdx` are then used to complete the proof.
|
||
-/
|
||
lemma ofCrAnOp_superCommute_normalOrder_ofCrAnList_sum (φ : 𝓕.CrAnFieldOp)
|
||
(φs : List 𝓕.CrAnFieldOp) : [ofCrAnOp φ, 𝓝(ofCrAnList φs)]ₛ = ∑ n : Fin φs.length,
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) • [ofCrAnOp φ, ofCrAnOp φs[n]]ₛ
|
||
* 𝓝(ofCrAnList (φs.eraseIdx n)) := by
|
||
rw [normalOrder_ofCrAnList, map_smul]
|
||
rw [superCommute_ofCrAnOp_ofCrAnList_eq_sum, Finset.smul_sum,
|
||
sum_normalOrderList_length]
|
||
congr
|
||
funext n
|
||
simp only [instCommGroup.eq_1, List.get_eq_getElem, normalOrderList_get_normalOrderEquiv,
|
||
normalOrderList_eraseIdx_normalOrderEquiv, Algebra.smul_mul_assoc, Fin.getElem_fin]
|
||
rw [ofCrAnList_eq_normalOrder, mul_smul_comm, smul_smul, smul_smul]
|
||
by_cases hs : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[n])
|
||
· congr
|
||
erw [normalOrderSign_eraseIdx, ← hs]
|
||
trans (normalOrderSign φs * normalOrderSign φs) *
|
||
(𝓢(𝓕 |>ₛ (φs.get n), 𝓕 |>ₛ ((normalOrderList φs).take (normalOrderEquiv n))) *
|
||
𝓢(𝓕 |>ₛ (φs.get n), 𝓕 |>ₛ ((normalOrderList φs).take (normalOrderEquiv n))))
|
||
* 𝓢(𝓕 |>ₛ (φs.get n), 𝓕 |>ₛ (φs.take n))
|
||
· ring_nf
|
||
rw [hs]
|
||
rfl
|
||
· simp [hs]
|
||
· erw [superCommute_diff_statistic hs]
|
||
simp
|
||
|
||
lemma ofCrAnOp_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.CrAnFieldOp)
|
||
(φs : List 𝓕.FieldOp) :
|
||
[ofCrAnOp φ, 𝓝(ofFieldOpList φs)]ₛ = ∑ n : Fin φs.length, 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
|
||
[ofCrAnOp φ, ofFieldOp φs[n]]ₛ * 𝓝(ofFieldOpList (φs.eraseIdx n)) := by
|
||
conv_lhs =>
|
||
rw [ofFieldOpList_eq_sum, map_sum, map_sum]
|
||
enter [2, s]
|
||
rw [ofCrAnOp_superCommute_normalOrder_ofCrAnList_sum, CrAnSection.sum_over_length]
|
||
enter [2, n]
|
||
rw [CrAnSection.take_statistics_eq_take_state_statistics, smul_mul_assoc]
|
||
rw [Finset.sum_comm]
|
||
refine Finset.sum_congr rfl (fun n _ => ?_)
|
||
simp only [instCommGroup.eq_1, Fin.coe_cast, Fin.getElem_fin,
|
||
CrAnSection.sum_eraseIdxEquiv n _ n.prop,
|
||
CrAnSection.eraseIdxEquiv_symm_getElem,
|
||
CrAnSection.eraseIdxEquiv_symm_eraseIdx, ← Finset.smul_sum, Algebra.smul_mul_assoc]
|
||
conv_lhs =>
|
||
enter [2, 2, n]
|
||
rw [← Finset.mul_sum]
|
||
rw [← Finset.sum_mul, ← map_sum, ← map_sum, ← ofFieldOp_eq_sum, ← ofFieldOpList_eq_sum]
|
||
|
||
/--
|
||
The commutator of the annihilation part of a field operator with a normal ordered list of field
|
||
operators can be decomposed into the sum of the commutators of the annihilation part with each
|
||
element of the list of field operators, i.e.
|
||
`[anPart φ, 𝓝(φ₀…φₙ)]ₛ= ∑ i, 𝓢(φ, φ₀…φᵢ₋₁) • [anPart φ, φᵢ]ₛ * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`.
|
||
-/
|
||
lemma anPart_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||
[anPart φ, 𝓝(ofFieldOpList φs)]ₛ = ∑ n : Fin φs.length, 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
|
||
[anPart φ, ofFieldOpF φs[n]]ₛ * 𝓝(ofFieldOpList (φs.eraseIdx n)) := by
|
||
match φ with
|
||
| .inAsymp φ =>
|
||
simp
|
||
| .position φ =>
|
||
simp only [anPart_position, instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc]
|
||
rw [ofCrAnOp_superCommute_normalOrder_ofFieldOpList_sum]
|
||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod,
|
||
Fin.getElem_fin, Algebra.smul_mul_assoc]
|
||
rfl
|
||
| .outAsymp φ =>
|
||
simp only [anPart_posAsymp, instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc]
|
||
rw [ofCrAnOp_superCommute_normalOrder_ofFieldOpList_sum]
|
||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod,
|
||
Fin.getElem_fin, Algebra.smul_mul_assoc]
|
||
rfl
|
||
|
||
/-!
|
||
|
||
## Multiplying with normal ordered terms
|
||
|
||
-/
|
||
/--
|
||
Within a proto-operator algebra we have that
|
||
`anPartF φ * 𝓝(φ₀φ₁…φₙ) = 𝓝((anPart φ)φ₀φ₁…φₙ) + [anpart φ, 𝓝(φ₀φ₁…φₙ)]ₛ`.
|
||
-/
|
||
lemma anPart_mul_normalOrder_ofFieldOpList_eq_superCommute_reorder (φ : 𝓕.FieldOp)
|
||
(φs : List 𝓕.FieldOp) : anPart φ * 𝓝(ofFieldOpList φs) =
|
||
𝓝(anPart φ * ofFieldOpList φs) + [anPart φ, 𝓝(ofFieldOpList φs)]ₛ := by
|
||
rw [anPart_mul_normalOrder_ofFieldOpList_eq_superCommute]
|
||
simp only [instCommGroup.eq_1, add_left_inj]
|
||
rw [normalOrder_anPart_ofFieldOpList_swap]
|
||
|
||
/--
|
||
Within a proto-operator algebra we have that
|
||
`φ * 𝓝ᶠ(φ₀φ₁…φₙ) = 𝓝ᶠ(φφ₀φ₁…φₙ) + [anpart φ, 𝓝ᶠ(φ₀φ₁…φₙ)]ₛca`.
|
||
-/
|
||
lemma ofFieldOp_mul_normalOrder_ofFieldOpList_eq_superCommute (φ : 𝓕.FieldOp)
|
||
(φs : List 𝓕.FieldOp) : ofFieldOp φ * 𝓝(ofFieldOpList φs) =
|
||
𝓝(ofFieldOp φ * ofFieldOpList φs) + [anPart φ, 𝓝(ofFieldOpList φs)]ₛ := by
|
||
conv_lhs => rw [ofFieldOp_eq_crPart_add_anPart]
|
||
rw [add_mul, anPart_mul_normalOrder_ofFieldOpList_eq_superCommute_reorder, ← add_assoc,
|
||
← crPart_mul_normalOrder, ← map_add]
|
||
conv_lhs =>
|
||
lhs
|
||
rw [← add_mul, ← ofFieldOp_eq_crPart_add_anPart]
|
||
|
||
/-- In the expansion of `ofFieldOpF φ * normalOrderF (ofFieldOpListF φs)` the element
|
||
of `𝓞.A` associated with contracting `φ` with the (optional) `n`th element of `φs`. -/
|
||
noncomputable def contractStateAtIndex (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||
(n : Option (Fin φs.length)) : 𝓕.FieldOpAlgebra :=
|
||
match n with
|
||
| none => 1
|
||
| some n => 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) • [anPart φ, ofFieldOp φs[n]]ₛ
|
||
|
||
/--
|
||
For a field specification `𝓕`, a `φ` in `𝓕.FieldOp` and a list `φs` of `𝓕.FieldOp`
|
||
then `φ * 𝓝(φ₀φ₁…φₙ)` is equal to
|
||
|
||
`𝓝(φφ₀φ₁…φₙ) + ∑ i, (𝓢(φ,φ₀φ₁…φᵢ₋₁) • [anPart φ, φᵢ]ₛ) * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`.
|
||
|
||
The proof of ultimately goes as follows:
|
||
- `ofFieldOp_eq_crPart_add_anPart` is used to split `φ` into its creation and annihilation parts.
|
||
- The following relation is then used
|
||
|
||
`crPart φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(crPart φ * φ₀φ₁…φₙ)`.
|
||
|
||
- It used that `anPart φ * 𝓝(φ₀φ₁…φₙ)` is equal to
|
||
|
||
`𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ + [anPart φ, 𝓝(φ₀φ₁…φₙ)]`
|
||
|
||
- Then it is used that
|
||
|
||
`𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ = 𝓝(anPart φ * φ₀φ₁…φₙ)`
|
||
|
||
- The result `ofCrAnOp_superCommute_normalOrder_ofCrAnList_sum` is used
|
||
to expand `[anPart φ, 𝓝(φ₀φ₁…φₙ)]` as a sum.
|
||
-/
|
||
lemma ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||
ofFieldOp φ * 𝓝(ofFieldOpList φs) =
|
||
∑ n : Option (Fin φs.length), contractStateAtIndex φ φs n *
|
||
𝓝(ofFieldOpList (optionEraseZ φs φ n)) := by
|
||
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_superCommute]
|
||
rw [anPart_superCommute_normalOrder_ofFieldOpList_sum]
|
||
simp only [instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc, contractStateAtIndex,
|
||
Fintype.sum_option, one_mul]
|
||
rfl
|
||
|
||
/-!
|
||
|
||
## Cons vs insertIdx for a normal ordered term.
|
||
|
||
-/
|
||
|
||
/--
|
||
Within a proto-operator algebra, `N(φφ₀φ₁…φₙ) = s • N(φ₀…φₖ₋₁φφₖ…φₙ)`, where
|
||
`s` is the exchange sign for `φ` and `φ₀…φₖ₋₁`.
|
||
-/
|
||
lemma ofFieldOpList_normalOrder_insert (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||
(k : Fin φs.length.succ) : 𝓝(ofFieldOpList (φ :: φs)) =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs.take k) • 𝓝(ofFieldOpList (φs.insertIdx k φ)) := by
|
||
have hl : φs.insertIdx k φ = φs.take k ++ [φ] ++ φs.drop k := by
|
||
rw [HepLean.List.insertIdx_eq_take_drop]
|
||
simp
|
||
rw [hl]
|
||
rw [ofFieldOpList_append, ofFieldOpList_append]
|
||
rw [ofFieldOpList_mul_ofFieldOpList_eq_superCommute, add_mul]
|
||
simp only [instCommGroup.eq_1, Nat.succ_eq_add_one, ofList_singleton, Algebra.smul_mul_assoc,
|
||
map_add, map_smul, normalOrder_superCommute_left_eq_zero, add_zero, smul_smul,
|
||
exchangeSign_mul_self_swap, one_smul]
|
||
rw [← ofFieldOpList_append, ← ofFieldOpList_append]
|
||
simp
|
||
|
||
/-!
|
||
|
||
## The normal ordering of a product of two states
|
||
|
||
-/
|
||
|
||
@[simp]
|
||
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.FieldOp) :
|
||
𝓝(crPart φ * crPart φ') = crPart φ * crPart φ' := by
|
||
rw [crPart, crPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_crPartF_mul_crPartF]
|
||
|
||
@[simp]
|
||
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.FieldOp) :
|
||
𝓝(anPart φ * anPart φ') = anPart φ * anPart φ' := by
|
||
rw [anPart, anPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_anPartF_mul_anPartF]
|
||
|
||
@[simp]
|
||
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.FieldOp) :
|
||
𝓝(crPart φ * anPart φ') = crPart φ * anPart φ' := by
|
||
rw [crPart, anPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_crPartF_mul_anPartF]
|
||
|
||
@[simp]
|
||
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.FieldOp) :
|
||
𝓝(anPart φ * crPart φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * anPart φ := by
|
||
rw [anPart, crPart, ← map_mul, normalOrder_eq_ι_normalOrderF, normalOrderF_anPartF_mul_crPartF]
|
||
simp
|
||
|
||
lemma normalOrder_ofFieldOp_mul_ofFieldOp (φ φ' : 𝓕.FieldOp) : 𝓝(ofFieldOp φ * ofFieldOp φ') =
|
||
crPart φ * crPart φ' + 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • (crPart φ' * anPart φ) +
|
||
crPart φ * anPart φ' + anPart φ * anPart φ' := by
|
||
rw [ofFieldOp, ofFieldOp, ← map_mul, normalOrder_eq_ι_normalOrderF,
|
||
normalOrderF_ofFieldOpF_mul_ofFieldOpF]
|
||
rfl
|
||
|
||
end FieldOpAlgebra
|
||
end FieldSpecification
|