112 lines
4.6 KiB
Text
112 lines
4.6 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.WickContraction.StaticContract
|
||
import HepLean.PerturbationTheory.FieldOpAlgebra.WicksTheorem
|
||
import HepLean.Meta.Remark.Basic
|
||
/-!
|
||
|
||
# Static Wick's theorem
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
variable {𝓕 : FieldSpecification}
|
||
open FieldOpFreeAlgebra
|
||
|
||
open HepLean.List
|
||
open WickContraction
|
||
open FieldStatistic
|
||
namespace FieldOpAlgebra
|
||
|
||
lemma static_wick_theorem_nil : ofFieldOpList [] = ∑ (φsΛ : WickContraction [].length),
|
||
φsΛ.sign (𝓕 := 𝓕) • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ) := by
|
||
simp only [ofFieldOpList, ofFieldOpListF_nil, map_one, List.length_nil]
|
||
rw [sum_WickContraction_nil, uncontractedListGet, nil_zero_uncontractedList]
|
||
simp [sign, empty, staticContract]
|
||
|
||
/--
|
||
The static Wicks theorem states that
|
||
`φ₀…φₙ` is equal to the sum of
|
||
`φsΛ.1.sign • φsΛ.1.staticContract * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)`
|
||
over all Wick contraction `φsΛ`.
|
||
This is compared to the ordinary Wicks theorem in which `staticContract` is replaced with
|
||
`timeContract`.
|
||
-/
|
||
theorem static_wick_theorem : (φs : List 𝓕.FieldOp) →
|
||
ofFieldOpList φs = ∑ (φsΛ : WickContraction φs.length),
|
||
φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
|
||
| [] => static_wick_theorem_nil
|
||
| φ :: φs => by
|
||
rw [ofFieldOpList_cons, static_wick_theorem φs]
|
||
rw [show (φ :: φs) = φs.insertIdx (⟨0, Nat.zero_lt_succ φs.length⟩ : Fin φs.length.succ) φ
|
||
from rfl]
|
||
conv_rhs => rw [insertLift_sum]
|
||
rw [Finset.mul_sum]
|
||
apply Finset.sum_congr rfl
|
||
intro c _
|
||
trans (sign φs c • ↑c.staticContract * (ofFieldOp φ * normalOrder (ofFieldOpList [c]ᵘᶜ)))
|
||
· have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center ℂ _)
|
||
(c.staticContract).2 c.sign)
|
||
conv_rhs => rw [← mul_assoc, ← ht]
|
||
simp [mul_assoc]
|
||
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum]
|
||
rw [Finset.mul_sum]
|
||
rw [uncontractedFieldOpEquiv_list_sum]
|
||
refine Finset.sum_congr rfl (fun n _ => ?_)
|
||
match n with
|
||
| none =>
|
||
simp only [contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
|
||
Equiv.coe_trans, Option.map_none', one_mul, Algebra.smul_mul_assoc, Nat.succ_eq_add_one,
|
||
Fin.zero_eta, Fin.val_zero, List.insertIdx_zero, staticContract_insertAndContract_none,
|
||
insertAndContract_uncontractedList_none_zero]
|
||
erw [sign_insert_none_zero]
|
||
rfl
|
||
| some n =>
|
||
simp only [Algebra.smul_mul_assoc, Nat.succ_eq_add_one, Fin.zero_eta, Fin.val_zero,
|
||
List.insertIdx_zero]
|
||
rw [normalOrder_uncontracted_some]
|
||
simp only [← mul_assoc]
|
||
rw [← smul_mul_assoc]
|
||
conv_rhs => rw [← smul_mul_assoc]
|
||
congr 1
|
||
rw [staticConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt]
|
||
swap
|
||
· simp
|
||
rw [smul_smul]
|
||
by_cases hn : GradingCompliant φs c ∧ (𝓕|>ₛφ) = (𝓕|>ₛ φs[n.1])
|
||
· congr 1
|
||
swap
|
||
· have h1 := c.staticContract.2
|
||
rw [@Subalgebra.mem_center_iff] at h1
|
||
rw [h1]
|
||
erw [sign_insert_some]
|
||
rw [mul_assoc, mul_comm c.sign, ← mul_assoc]
|
||
rw [signInsertSome_mul_filter_contracted_of_not_lt]
|
||
simp only [instCommGroup.eq_1, Fin.zero_succAbove, Fin.not_lt_zero, Finset.filter_False,
|
||
ofFinset_empty, map_one, one_mul]
|
||
simp only [Fin.zero_succAbove, Fin.not_lt_zero, not_false_eq_true]
|
||
exact hn
|
||
· simp only [Fin.getElem_fin, not_and] at hn
|
||
by_cases h0 : ¬ GradingCompliant φs c
|
||
· rw [staticContract_of_not_gradingCompliant]
|
||
simp only [ZeroMemClass.coe_zero, zero_mul, smul_zero, instCommGroup.eq_1, mul_zero]
|
||
exact h0
|
||
· simp_all only [Finset.mem_univ, not_not, instCommGroup.eq_1, forall_const]
|
||
have h1 : contractStateAtIndex φ [c]ᵘᶜ
|
||
((uncontractedFieldOpEquiv φs c) (some n)) = 0 := by
|
||
simp only [contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
|
||
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
|
||
instCommGroup.eq_1, Fin.coe_cast, Fin.getElem_fin, smul_eq_zero]
|
||
right
|
||
simp only [uncontractedListGet, List.getElem_map,
|
||
uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem]
|
||
rw [superCommute_anPart_ofFieldOpF_diff_grade_zero]
|
||
exact hn
|
||
rw [h1]
|
||
simp
|
||
|
||
end FieldOpAlgebra
|
||
end FieldSpecification
|