580 lines
25 KiB
Text
580 lines
25 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.FieldSpecification.NormalOrder
|
||
import HepLean.PerturbationTheory.FieldOpFreeAlgebra.SuperCommute
|
||
import HepLean.PerturbationTheory.Koszul.KoszulSign
|
||
/-!
|
||
|
||
# Normal Ordering in the FieldOpFreeAlgebra
|
||
|
||
In the module
|
||
`HepLean.PerturbationTheory.FieldSpecification.NormalOrder`
|
||
we defined the normal ordering of a list of `CrAnFieldOp`.
|
||
In this module we extend the normal ordering to a linear map on `FieldOpFreeAlgebra`.
|
||
|
||
We derive properties of this normal ordering.
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
variable {𝓕 : FieldSpecification}
|
||
open FieldStatistic
|
||
|
||
namespace FieldOpFreeAlgebra
|
||
|
||
noncomputable section
|
||
|
||
/-- The linear map on the free creation and annihlation
|
||
algebra defined as the map taking
|
||
a list of CrAnFieldOp to the normal-ordered list of states multiplied by
|
||
the sign corresponding to the number of fermionic-fermionic
|
||
exchanges done in ordering. -/
|
||
def normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 :=
|
||
Basis.constr ofCrAnListFBasis ℂ fun φs =>
|
||
normalOrderSign φs • ofCrAnListF (normalOrderList φs)
|
||
|
||
@[inherit_doc normalOrderF]
|
||
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "𝓝ᶠ(" a ")" => normalOrderF a
|
||
|
||
lemma normalOrderF_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
|
||
𝓝ᶠ(ofCrAnListF φs) = normalOrderSign φs • ofCrAnListF (normalOrderList φs) := by
|
||
rw [← ofListBasis_eq_ofList, normalOrderF, Basis.constr_basis]
|
||
|
||
lemma ofCrAnListF_eq_normalOrderF (φs : List 𝓕.CrAnFieldOp) :
|
||
ofCrAnListF (normalOrderList φs) = normalOrderSign φs • 𝓝ᶠ(ofCrAnListF φs) := by
|
||
rw [normalOrderF_ofCrAnListF, normalOrderList, smul_smul, normalOrderSign,
|
||
Wick.koszulSign_mul_self, one_smul]
|
||
|
||
lemma normalOrderF_one : normalOrderF (𝓕 := 𝓕) 1 = 1 := by
|
||
rw [← ofCrAnListF_nil, normalOrderF_ofCrAnListF, normalOrderSign_nil, normalOrderList_nil,
|
||
ofCrAnListF_nil, one_smul]
|
||
|
||
lemma normalOrderF_normalOrderF_mid (a b c : 𝓕.FieldOpFreeAlgebra) :
|
||
𝓝ᶠ(a * b * c) = 𝓝ᶠ(a * 𝓝ᶠ(b) * c) := by
|
||
let pc (c : 𝓕.FieldOpFreeAlgebra) (hc : c ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||
Prop := 𝓝ᶠ(a * b * c) = 𝓝ᶠ(a * 𝓝ᶠ(b) * c)
|
||
change pc c (Basis.mem_span _ c)
|
||
apply Submodule.span_induction
|
||
· intro x hx
|
||
obtain ⟨φs, rfl⟩ := hx
|
||
simp only [ofListBasis_eq_ofList, pc]
|
||
let pb (b : 𝓕.FieldOpFreeAlgebra) (hb : b ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||
Prop := 𝓝ᶠ(a * b * ofCrAnListF φs) = 𝓝ᶠ(a * 𝓝ᶠ(b) * ofCrAnListF φs)
|
||
change pb b (Basis.mem_span _ b)
|
||
apply Submodule.span_induction
|
||
· intro x hx
|
||
obtain ⟨φs', rfl⟩ := hx
|
||
simp only [ofListBasis_eq_ofList, pb]
|
||
let pa (a : 𝓕.FieldOpFreeAlgebra) (ha : a ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||
Prop := 𝓝ᶠ(a * ofCrAnListF φs' * ofCrAnListF φs) =
|
||
𝓝ᶠ(a * 𝓝ᶠ(ofCrAnListF φs') * ofCrAnListF φs)
|
||
change pa a (Basis.mem_span _ a)
|
||
apply Submodule.span_induction
|
||
· intro x hx
|
||
obtain ⟨φs'', rfl⟩ := hx
|
||
simp only [ofListBasis_eq_ofList, pa]
|
||
rw [normalOrderF_ofCrAnListF]
|
||
simp only [← ofCrAnListF_append, Algebra.mul_smul_comm,
|
||
Algebra.smul_mul_assoc, map_smul]
|
||
rw [normalOrderF_ofCrAnListF, normalOrderF_ofCrAnListF, smul_smul]
|
||
congr 1
|
||
· simp only [normalOrderSign, normalOrderList]
|
||
rw [Wick.koszulSign_of_append_eq_insertionSort, mul_comm]
|
||
· congr 1
|
||
simp only [normalOrderList]
|
||
rw [HepLean.List.insertionSort_append_insertionSort_append]
|
||
· simp [pa]
|
||
· intro x y hx hy h1 h2
|
||
simp_all [pa, add_mul]
|
||
· intro x hx h
|
||
simp_all [pa]
|
||
· simp [pb]
|
||
· intro x y hx hy h1 h2
|
||
simp_all [pb, mul_add, add_mul]
|
||
· intro x hx h
|
||
simp_all [pb]
|
||
· simp [pc]
|
||
· intro x y hx hy h1 h2
|
||
simp_all [pc, mul_add]
|
||
· intro x hx h hp
|
||
simp_all [pc]
|
||
|
||
lemma normalOrderF_normalOrderF_right (a b : 𝓕.FieldOpFreeAlgebra) :
|
||
𝓝ᶠ(a * b) = 𝓝ᶠ(a * 𝓝ᶠ(b)) := by
|
||
trans 𝓝ᶠ(a * b * 1)
|
||
· simp
|
||
· rw [normalOrderF_normalOrderF_mid]
|
||
simp
|
||
|
||
lemma normalOrderF_normalOrderF_left (a b : 𝓕.FieldOpFreeAlgebra) :
|
||
𝓝ᶠ(a * b) = 𝓝ᶠ(𝓝ᶠ(a) * b) := by
|
||
trans 𝓝ᶠ(1 * a * b)
|
||
· simp
|
||
· rw [normalOrderF_normalOrderF_mid]
|
||
simp
|
||
|
||
/-!
|
||
|
||
## Normal ordering with a creation operator on the left or annihilation on the right
|
||
|
||
-/
|
||
|
||
lemma normalOrderF_ofCrAnListF_cons_create (φ : 𝓕.CrAnFieldOp)
|
||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnFieldOp) :
|
||
𝓝ᶠ(ofCrAnListF (φ :: φs)) = ofCrAnOpF φ * 𝓝ᶠ(ofCrAnListF φs) := by
|
||
rw [normalOrderF_ofCrAnListF, normalOrderSign_cons_create φ hφ,
|
||
normalOrderList_cons_create φ hφ φs]
|
||
rw [ofCrAnListF_cons, normalOrderF_ofCrAnListF, mul_smul_comm]
|
||
|
||
lemma normalOrderF_create_mul (φ : 𝓕.CrAnFieldOp)
|
||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (a : FieldOpFreeAlgebra 𝓕) :
|
||
𝓝ᶠ(ofCrAnOpF φ * a) = ofCrAnOpF φ * 𝓝ᶠ(a) := by
|
||
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnOpF φ)) a =
|
||
(mulLinearMap (ofCrAnOpF φ) ∘ₗ normalOrderF) a
|
||
refine LinearMap.congr_fun (ofCrAnListFBasis.ext fun l ↦ ?_) a
|
||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
|
||
LinearMap.coe_comp, Function.comp_apply]
|
||
rw [← ofCrAnListF_cons, normalOrderF_ofCrAnListF_cons_create φ hφ]
|
||
|
||
lemma normalOrderF_ofCrAnListF_append_annihilate (φ : 𝓕.CrAnFieldOp)
|
||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnFieldOp) :
|
||
𝓝ᶠ(ofCrAnListF (φs ++ [φ])) = 𝓝ᶠ(ofCrAnListF φs) * ofCrAnOpF φ := by
|
||
rw [normalOrderF_ofCrAnListF, normalOrderSign_append_annihlate φ hφ φs,
|
||
normalOrderList_append_annihilate φ hφ φs, ofCrAnListF_append, ofCrAnListF_singleton,
|
||
normalOrderF_ofCrAnListF, smul_mul_assoc]
|
||
|
||
lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnFieldOp)
|
||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate)
|
||
(a : FieldOpFreeAlgebra 𝓕) : 𝓝ᶠ(a * ofCrAnOpF φ) = 𝓝ᶠ(a) * ofCrAnOpF φ := by
|
||
change (normalOrderF ∘ₗ mulLinearMap.flip (ofCrAnOpF φ)) a =
|
||
(mulLinearMap.flip (ofCrAnOpF φ) ∘ₗ normalOrderF) a
|
||
refine LinearMap.congr_fun (ofCrAnListFBasis.ext fun l ↦ ?_) a
|
||
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
|
||
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk]
|
||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_append, ofCrAnListF_singleton,
|
||
normalOrderF_ofCrAnListF_append_annihilate φ hφ]
|
||
|
||
lemma normalOrderF_crPartF_mul (φ : 𝓕.FieldOp) (a : FieldOpFreeAlgebra 𝓕) :
|
||
𝓝ᶠ(crPartF φ * a) =
|
||
crPartF φ * 𝓝ᶠ(a) := by
|
||
match φ with
|
||
| .inAsymp φ =>
|
||
rw [crPartF]
|
||
exact normalOrderF_create_mul ⟨FieldOp.inAsymp φ, ()⟩ rfl a
|
||
| .position φ =>
|
||
rw [crPartF]
|
||
exact normalOrderF_create_mul _ rfl _
|
||
| .outAsymp φ => simp
|
||
|
||
lemma normalOrderF_mul_anPartF (φ : 𝓕.FieldOp) (a : FieldOpFreeAlgebra 𝓕) :
|
||
𝓝ᶠ(a * anPartF φ) =
|
||
𝓝ᶠ(a) * anPartF φ := by
|
||
match φ with
|
||
| .inAsymp φ => simp
|
||
| .position φ =>
|
||
rw [anPartF]
|
||
exact normalOrderF_mul_annihilate _ rfl _
|
||
| .outAsymp φ =>
|
||
rw [anPartF]
|
||
refine normalOrderF_mul_annihilate _ rfl _
|
||
|
||
/-!
|
||
|
||
## Normal ordering for an adjacent creation and annihliation state
|
||
|
||
The main result of this section is `normalOrderF_superCommuteF_annihilate_create`.
|
||
-/
|
||
|
||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕.CrAnFieldOp)
|
||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||
(φs φs' : List 𝓕.CrAnFieldOp) :
|
||
𝓝ᶠ(ofCrAnListF φs' * ofCrAnOpF φc * ofCrAnOpF φa * ofCrAnListF φs) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||
𝓝ᶠ(ofCrAnListF φs' * ofCrAnOpF φa * ofCrAnOpF φc * ofCrAnListF φs) := by
|
||
rw [mul_assoc, mul_assoc, ← ofCrAnListF_cons, ← ofCrAnListF_cons, ← ofCrAnListF_append]
|
||
rw [normalOrderF_ofCrAnListF, normalOrderSign_swap_create_annihlate φc φa hφc hφa]
|
||
rw [normalOrderList_swap_create_annihlate φc φa hφc hφa, ← smul_smul, ← normalOrderF_ofCrAnListF]
|
||
rw [ofCrAnListF_append, ofCrAnListF_cons, ofCrAnListF_cons]
|
||
noncomm_ring
|
||
|
||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnFieldOp)
|
||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||
(φs : List 𝓕.CrAnFieldOp) (a : 𝓕.FieldOpFreeAlgebra) :
|
||
𝓝ᶠ(ofCrAnListF φs * ofCrAnOpF φc * ofCrAnOpF φa * a) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||
𝓝ᶠ(ofCrAnListF φs * ofCrAnOpF φa * ofCrAnOpF φc * a) := by
|
||
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnListF φs * ofCrAnOpF φc * ofCrAnOpF φa)) a =
|
||
(smulLinearMap _ ∘ₗ normalOrderF ∘ₗ
|
||
mulLinearMap (ofCrAnListF φs * ofCrAnOpF φa * ofCrAnOpF φc)) a
|
||
refine LinearMap.congr_fun (ofCrAnListFBasis.ext fun l ↦ ?_) a
|
||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
|
||
LinearMap.coe_comp, Function.comp_apply, instCommGroup.eq_1]
|
||
rw [normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF φc φa hφc hφa]
|
||
rfl
|
||
|
||
lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnFieldOp)
|
||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||
𝓝ᶠ(a * ofCrAnOpF φc * ofCrAnOpF φa * b) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||
𝓝ᶠ(a * ofCrAnOpF φa * ofCrAnOpF φc * b) := by
|
||
rw [mul_assoc, mul_assoc, mul_assoc, mul_assoc]
|
||
change (normalOrderF ∘ₗ mulLinearMap.flip (ofCrAnOpF φc * (ofCrAnOpF φa * b))) a =
|
||
(smulLinearMap (𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa)) ∘ₗ
|
||
normalOrderF ∘ₗ mulLinearMap.flip (ofCrAnOpF φa * (ofCrAnOpF φc * b))) a
|
||
refine LinearMap.congr_fun (ofCrAnListFBasis.ext fun l ↦ ?_) _
|
||
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
|
||
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk, instCommGroup.eq_1, ← mul_assoc,
|
||
normalOrderF_swap_create_annihlate_ofCrAnListF φc φa hφc hφa]
|
||
rfl
|
||
|
||
lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnFieldOp)
|
||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||
𝓝ᶠ(a * [ofCrAnOpF φc, ofCrAnOpF φa]ₛca * b) = 0 := by
|
||
simp only [superCommuteF_ofCrAnOpF_ofCrAnOpF, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc, ← mul_assoc, ← mul_assoc,
|
||
normalOrderF_swap_create_annihlate φc φa hφc hφa]
|
||
simp
|
||
|
||
lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnFieldOp)
|
||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||
𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnOpF φc]ₛca * b) = 0 := by
|
||
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF_symm]
|
||
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
|
||
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
|
||
exact Or.inr (normalOrderF_superCommuteF_create_annihilate φc φa hφc hφa ..)
|
||
|
||
lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||
𝓝ᶠ(a * (crPartF φ) * (anPartF φ') * b) =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||
𝓝ᶠ(a * (anPartF φ') * (crPartF φ) * b) := by
|
||
match φ, φ' with
|
||
| _, .inAsymp φ' => simp
|
||
| .outAsymp φ, _ => simp
|
||
| .position φ, .position φ' =>
|
||
simp only [crPartF_position, anPartF_position, instCommGroup.eq_1]
|
||
rw [normalOrderF_swap_create_annihlate]
|
||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||
rfl; rfl
|
||
| .inAsymp φ, .outAsymp φ' =>
|
||
simp only [crPartF_negAsymp, anPartF_posAsymp, instCommGroup.eq_1]
|
||
rw [normalOrderF_swap_create_annihlate]
|
||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||
rfl; rfl
|
||
| .inAsymp φ, .position φ' =>
|
||
simp only [crPartF_negAsymp, anPartF_position, instCommGroup.eq_1]
|
||
rw [normalOrderF_swap_create_annihlate]
|
||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||
rfl; rfl
|
||
| .position φ, .outAsymp φ' =>
|
||
simp only [crPartF_position, anPartF_posAsymp, instCommGroup.eq_1]
|
||
rw [normalOrderF_swap_create_annihlate]
|
||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||
rfl; rfl
|
||
|
||
/-!
|
||
|
||
## Normal ordering for an anPartF and crPartF
|
||
|
||
Using the results from above.
|
||
|
||
-/
|
||
|
||
lemma normalOrderF_swap_anPartF_crPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||
𝓝ᶠ(a * (anPartF φ) * (crPartF φ') * b) =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝ᶠ(a * (crPartF φ') *
|
||
(anPartF φ) * b) := by
|
||
simp [normalOrderF_swap_crPartF_anPartF, smul_smul]
|
||
|
||
lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||
𝓝ᶠ(a * superCommuteF
|
||
(crPartF φ) (anPartF φ') * b) = 0 := by
|
||
match φ, φ' with
|
||
| _, .inAsymp φ' => simp
|
||
| .outAsymp φ', _ => simp
|
||
| .position φ, .position φ' =>
|
||
rw [crPartF_position, anPartF_position]
|
||
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||
| .inAsymp φ, .outAsymp φ' =>
|
||
rw [crPartF_negAsymp, anPartF_posAsymp]
|
||
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||
| .inAsymp φ, .position φ' =>
|
||
rw [crPartF_negAsymp, anPartF_position]
|
||
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||
| .position φ, .outAsymp φ' =>
|
||
rw [crPartF_position, anPartF_posAsymp]
|
||
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||
|
||
lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||
𝓝ᶠ(a * superCommuteF
|
||
(anPartF φ) (crPartF φ') * b) = 0 := by
|
||
match φ, φ' with
|
||
| .inAsymp φ', _ => simp
|
||
| _, .outAsymp φ' => simp
|
||
| .position φ, .position φ' =>
|
||
rw [anPartF_position, crPartF_position]
|
||
exact normalOrderF_superCommuteF_annihilate_create _ _ rfl rfl ..
|
||
| .outAsymp φ', .inAsymp φ =>
|
||
simp only [anPartF_posAsymp, crPartF_negAsymp]
|
||
exact normalOrderF_superCommuteF_annihilate_create _ _ rfl rfl ..
|
||
| .position φ', .inAsymp φ =>
|
||
simp only [anPartF_position, crPartF_negAsymp]
|
||
exact normalOrderF_superCommuteF_annihilate_create _ _ rfl rfl ..
|
||
| .outAsymp φ, .position φ' =>
|
||
simp only [anPartF_posAsymp, crPartF_position]
|
||
exact normalOrderF_superCommuteF_annihilate_create _ _ rfl rfl ..
|
||
|
||
/-!
|
||
|
||
## The normal ordering of a product of two states
|
||
|
||
-/
|
||
|
||
@[simp]
|
||
lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.FieldOp) :
|
||
𝓝ᶠ(crPartF φ * crPartF φ') =
|
||
crPartF φ * crPartF φ' := by
|
||
rw [normalOrderF_crPartF_mul]
|
||
conv_lhs => rw [← mul_one (crPartF φ')]
|
||
rw [normalOrderF_crPartF_mul, normalOrderF_one]
|
||
simp
|
||
|
||
@[simp]
|
||
lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.FieldOp) :
|
||
𝓝ᶠ(anPartF φ * anPartF φ') =
|
||
anPartF φ * anPartF φ' := by
|
||
rw [normalOrderF_mul_anPartF]
|
||
conv_lhs => rw [← one_mul (anPartF φ)]
|
||
rw [normalOrderF_mul_anPartF, normalOrderF_one]
|
||
simp
|
||
|
||
@[simp]
|
||
lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.FieldOp) :
|
||
𝓝ᶠ(crPartF φ * anPartF φ') =
|
||
crPartF φ * anPartF φ' := by
|
||
rw [normalOrderF_crPartF_mul]
|
||
conv_lhs => rw [← one_mul (anPartF φ')]
|
||
rw [normalOrderF_mul_anPartF, normalOrderF_one]
|
||
simp
|
||
|
||
@[simp]
|
||
lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.FieldOp) :
|
||
𝓝ᶠ(anPartF φ * crPartF φ') =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||
(crPartF φ' * anPartF φ) := by
|
||
conv_lhs => rw [← one_mul (anPartF φ * crPartF φ')]
|
||
conv_lhs => rw [← mul_one (1 * (anPartF φ *
|
||
crPartF φ'))]
|
||
rw [← mul_assoc, normalOrderF_swap_anPartF_crPartF]
|
||
simp
|
||
|
||
lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
|
||
𝓝ᶠ(ofFieldOpF φ * ofFieldOpF φ') =
|
||
crPartF φ * crPartF φ' +
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||
(crPartF φ' * anPartF φ) +
|
||
crPartF φ * anPartF φ' +
|
||
anPartF φ * anPartF φ' := by
|
||
rw [ofFieldOpF_eq_crPartF_add_anPartF, ofFieldOpF_eq_crPartF_add_anPartF, mul_add, add_mul,
|
||
add_mul]
|
||
simp only [map_add, normalOrderF_crPartF_mul_crPartF, normalOrderF_anPartF_mul_crPartF,
|
||
instCommGroup.eq_1, normalOrderF_crPartF_mul_anPartF, normalOrderF_anPartF_mul_anPartF]
|
||
abel
|
||
|
||
/-!
|
||
|
||
## Normal order with super commutors
|
||
|
||
-/
|
||
|
||
TODO "Split the following two lemmas up into smaller parts."
|
||
|
||
lemma normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF
|
||
(φc φc' : 𝓕.CrAnFieldOp) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
|
||
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnFieldOp) :
|
||
(𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φc, ofCrAnOpF φc']ₛca * ofCrAnListF φs')) =
|
||
normalOrderSign (φs ++ φc' :: φc :: φs') •
|
||
(ofCrAnListF (createFilter φs) * [ofCrAnOpF φc, ofCrAnOpF φc']ₛca *
|
||
ofCrAnListF (createFilter φs') * ofCrAnListF (annihilateFilter (φs ++ φs'))) := by
|
||
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF, mul_sub, sub_mul, map_sub]
|
||
conv_lhs =>
|
||
lhs; rhs
|
||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append,
|
||
← ofCrAnListF_append, ← ofCrAnListF_append]
|
||
conv_lhs =>
|
||
lhs
|
||
rw [normalOrderF_ofCrAnListF, normalOrderList_eq_createFilter_append_annihilateFilter]
|
||
rw [createFilter_append, createFilter_append, createFilter_append,
|
||
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
|
||
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
|
||
annihilateFilter_singleton_create _ hφc, annihilateFilter_singleton_create _ hφc']
|
||
enter [2, 1, 2]
|
||
simp only [List.singleton_append, List.append_assoc, List.cons_append, List.append_nil,
|
||
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
|
||
rw [← annihilateFilter_append]
|
||
conv_lhs =>
|
||
rhs; rhs
|
||
rw [smul_mul_assoc, Algebra.mul_smul_comm, smul_mul_assoc]
|
||
rhs
|
||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append,
|
||
← ofCrAnListF_append, ← ofCrAnListF_append]
|
||
conv_lhs =>
|
||
rhs
|
||
rw [map_smul]
|
||
rhs
|
||
rw [normalOrderF_ofCrAnListF, normalOrderList_eq_createFilter_append_annihilateFilter]
|
||
rw [createFilter_append, createFilter_append, createFilter_append,
|
||
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
|
||
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
|
||
annihilateFilter_singleton_create _ hφc, annihilateFilter_singleton_create _ hφc']
|
||
enter [2, 1, 2]
|
||
simp only [List.singleton_append, List.append_assoc, List.cons_append, instCommGroup.eq_1,
|
||
List.append_nil, Algebra.smul_mul_assoc]
|
||
rw [← annihilateFilter_append]
|
||
conv_lhs =>
|
||
lhs; lhs
|
||
simp
|
||
conv_lhs =>
|
||
rhs; rhs; lhs
|
||
simp
|
||
rw [normalOrderSign_swap_create_create φc φc' hφc hφc']
|
||
rw [smul_smul, mul_comm, ← smul_smul]
|
||
rw [← smul_sub, ofCrAnListF_append, ofCrAnListF_append, ofCrAnListF_append]
|
||
conv_lhs =>
|
||
rhs; rhs
|
||
rw [ofCrAnListF_append, ofCrAnListF_append, ofCrAnListF_append]
|
||
rw [← smul_mul_assoc, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
|
||
rw [← sub_mul, ← sub_mul, ← mul_sub, ofCrAnListF_append, ofCrAnListF_singleton,
|
||
ofCrAnListF_singleton]
|
||
rw [ofCrAnListF_append, ofCrAnListF_singleton, ofCrAnListF_singleton, smul_mul_assoc]
|
||
|
||
lemma normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
|
||
(φa φa' : 𝓕.CrAnFieldOp)
|
||
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate)
|
||
(φs φs' : List 𝓕.CrAnFieldOp) :
|
||
𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca * ofCrAnListF φs') =
|
||
normalOrderSign (φs ++ φa' :: φa :: φs') •
|
||
(ofCrAnListF (createFilter (φs ++ φs'))
|
||
* ofCrAnListF (annihilateFilter φs) * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca
|
||
* ofCrAnListF (annihilateFilter φs')) := by
|
||
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF, mul_sub, sub_mul, map_sub]
|
||
conv_lhs =>
|
||
lhs; rhs
|
||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append,
|
||
← ofCrAnListF_append, ← ofCrAnListF_append]
|
||
conv_lhs =>
|
||
lhs
|
||
rw [normalOrderF_ofCrAnListF, normalOrderList_eq_createFilter_append_annihilateFilter]
|
||
rw [createFilter_append, createFilter_append, createFilter_append,
|
||
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
|
||
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
|
||
annihilateFilter_singleton_annihilate _ hφa, annihilateFilter_singleton_annihilate _ hφa']
|
||
enter [2, 1, 1]
|
||
simp only [List.singleton_append, List.append_assoc, List.cons_append, List.append_nil,
|
||
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
|
||
rw [← createFilter_append]
|
||
conv_lhs =>
|
||
rhs; rhs
|
||
rw [smul_mul_assoc]
|
||
rw [Algebra.mul_smul_comm, smul_mul_assoc]
|
||
rhs
|
||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append,
|
||
← ofCrAnListF_append, ← ofCrAnListF_append]
|
||
conv_lhs =>
|
||
rhs
|
||
rw [map_smul]
|
||
rhs
|
||
rw [normalOrderF_ofCrAnListF, normalOrderList_eq_createFilter_append_annihilateFilter]
|
||
rw [createFilter_append, createFilter_append, createFilter_append,
|
||
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
|
||
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
|
||
annihilateFilter_singleton_annihilate _ hφa, annihilateFilter_singleton_annihilate _ hφa']
|
||
enter [2, 1, 1]
|
||
simp only [List.singleton_append, List.append_assoc, List.cons_append, instCommGroup.eq_1,
|
||
List.append_nil, Algebra.smul_mul_assoc]
|
||
rw [← createFilter_append]
|
||
conv_lhs =>
|
||
lhs; lhs
|
||
simp
|
||
conv_lhs =>
|
||
rhs; rhs; lhs
|
||
simp
|
||
rw [normalOrderSign_swap_annihilate_annihilate φa φa' hφa hφa']
|
||
rw [smul_smul, mul_comm, ← smul_smul]
|
||
rw [← smul_sub, ofCrAnListF_append, ofCrAnListF_append, ofCrAnListF_append]
|
||
conv_lhs =>
|
||
rhs; rhs
|
||
rw [ofCrAnListF_append, ofCrAnListF_append, ofCrAnListF_append]
|
||
rw [← Algebra.mul_smul_comm, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
|
||
rw [← mul_sub, ← sub_mul, ← mul_sub]
|
||
apply congrArg
|
||
conv_rhs => rw [mul_assoc, mul_assoc]
|
||
apply congrArg
|
||
rw [mul_assoc]
|
||
apply congrArg
|
||
rw [ofCrAnListF_append, ofCrAnListF_singleton, ofCrAnListF_singleton]
|
||
rw [ofCrAnListF_append, ofCrAnListF_singleton, ofCrAnListF_singleton, smul_mul_assoc]
|
||
|
||
/-!
|
||
|
||
## Super commututators involving a normal order.
|
||
|
||
-/
|
||
|
||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofCrAnListF (φs φs' : List 𝓕.CrAnFieldOp) :
|
||
[ofCrAnListF φs, 𝓝ᶠ(ofCrAnListF φs')]ₛca =
|
||
ofCrAnListF φs * 𝓝ᶠ(ofCrAnListF φs') -
|
||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofCrAnListF φs') * ofCrAnListF φs := by
|
||
simp only [normalOrderF_ofCrAnListF, map_smul, superCommuteF_ofCrAnListF_ofCrAnListF,
|
||
ofCrAnListF_append, instCommGroup.eq_1, normalOrderList_statistics, smul_sub, smul_smul,
|
||
Algebra.mul_smul_comm, mul_comm, Algebra.smul_mul_assoc]
|
||
|
||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnFieldOp)
|
||
(φs' : List 𝓕.FieldOp) : [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
|
||
ofCrAnListF φs * 𝓝ᶠ(ofFieldOpListF φs') -
|
||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnListF φs := by
|
||
rw [ofFieldOpListF_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
|
||
← Finset.sum_sub_distrib, map_sum]
|
||
congr
|
||
funext n
|
||
rw [ofCrAnListF_superCommuteF_normalOrderF_ofCrAnListF,
|
||
CrAnSection.statistics_eq_state_statistics]
|
||
|
||
/-!
|
||
|
||
## Multiplications with normal order written in terms of super commute.
|
||
|
||
-/
|
||
|
||
lemma ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnFieldOp)
|
||
(φs' : List 𝓕.FieldOp) :
|
||
ofCrAnListF φs * 𝓝ᶠ(ofFieldOpListF φs') =
|
||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnListF φs
|
||
+ [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||
simp [ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF]
|
||
|
||
lemma ofCrAnOpF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnFieldOp)
|
||
(φs' : List 𝓕.FieldOp) : ofCrAnOpF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnOpF φ
|
||
+ [ofCrAnOpF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||
simp [← ofCrAnListF_singleton, ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
|
||
|
||
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.FieldOp)
|
||
(φs' : List 𝓕.FieldOp) :
|
||
anPartF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs' * anPartF φ)
|
||
+ [anPartF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||
rw [normalOrderF_mul_anPartF]
|
||
match φ with
|
||
| .inAsymp φ => simp
|
||
| .position φ => simp [ofCrAnOpF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF, crAnStatistics]
|
||
| .outAsymp φ => simp [ofCrAnOpF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF, crAnStatistics]
|
||
|
||
end
|
||
|
||
end FieldOpFreeAlgebra
|
||
|
||
end FieldSpecification
|