PhysLean/HepLean/PerturbationTheory/Algebras/CrAnAlgebra/TimeOrder.lean
2025-01-27 11:26:02 +00:00

166 lines
6.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldSpecification.TimeOrder
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.SuperCommute
import HepLean.PerturbationTheory.Koszul.KoszulSign
/-!
# Time Ordering in the CrAnAlgebra
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open FieldStatistic
namespace CrAnAlgebra
noncomputable section
open HepLean.List
/-!
## Time order
-/
/-- Time ordering for the `CrAnAlgebra`. -/
def timeOrder : CrAnAlgebra 𝓕 →ₗ[] CrAnAlgebra 𝓕 :=
Basis.constr ofCrAnListBasis fun φs =>
crAnTimeOrderSign φs • ofCrAnList (crAnTimeOrderList φs)
@[inherit_doc timeOrder]
scoped[FieldSpecification.CrAnAlgebra] notation "𝓣ᶠ(" a ")" => timeOrder a
lemma timeOrder_ofCrAnList (φs : List 𝓕.CrAnStates) :
𝓣ᶠ(ofCrAnList φs) = crAnTimeOrderSign φs • ofCrAnList (crAnTimeOrderList φs) := by
rw [← ofListBasis_eq_ofList]
simp only [timeOrder, Basis.constr_basis]
lemma timeOrder_ofStateList (φs : List 𝓕.States) :
𝓣ᶠ(ofStateList φs) = timeOrderSign φs • ofStateList (timeOrderList φs) := by
conv_lhs =>
rw [ofStateList_sum, map_sum]
enter [2, x]
rw [timeOrder_ofCrAnList]
simp only [crAnTimeOrderSign_crAnSection]
rw [← Finset.smul_sum]
congr
rw [ofStateList_sum, sum_crAnSections_timeOrder]
rfl
lemma timeOrder_ofStateList_nil : timeOrder (𝓕 := 𝓕) (ofStateList []) = 1 := by
rw [timeOrder_ofStateList]
simp [timeOrderSign, Wick.koszulSign, timeOrderList]
@[simp]
lemma timeOrder_ofStateList_singleton (φ : 𝓕.States) : 𝓣ᶠ(ofStateList [φ]) = ofStateList [φ] := by
simp [timeOrder_ofStateList, timeOrderSign, timeOrderList]
lemma timeOrder_ofState_ofState_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
𝓣ᶠ(ofState φ * ofState ψ) = ofState φ * ofState ψ := by
rw [← ofStateList_singleton, ← ofStateList_singleton, ← ofStateList_append, timeOrder_ofStateList]
simp only [List.singleton_append]
rw [timeOrderSign_pair_ordered h, timeOrderList_pair_ordered h]
simp
lemma timeOrder_ofState_ofState_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
𝓣ᶠ(ofState φ * ofState ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • ofState ψ * ofState φ := by
rw [← ofStateList_singleton, ← ofStateList_singleton,
← ofStateList_append, timeOrder_ofStateList]
simp only [List.singleton_append, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [timeOrderSign_pair_not_ordered h, timeOrderList_pair_not_ordered h]
simp [← ofStateList_append]
lemma timeOrder_ofState_ofState_not_ordered_eq_timeOrder {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
𝓣ᶠ(ofState φ * ofState ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • 𝓣ᶠ(ofState ψ * ofState φ) := by
rw [timeOrder_ofState_ofState_not_ordered h]
rw [timeOrder_ofState_ofState_ordered]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc]
have hx := IsTotal.total (r := timeOrderRel) ψ φ
simp_all
/-- In the state algebra time, ordering obeys `T(φ₀φ₁…φₙ) = s * φᵢ * T(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`
where `φᵢ` is the state
which has maximum time and `s` is the exchange sign of `φᵢ` and `φ₀φ₁…φᵢ₋₁`. -/
lemma timeOrder_eq_maxTimeField_mul (φ : 𝓕.States) (φs : List 𝓕.States) :
𝓣ᶠ(ofStateList (φ :: φs)) =
𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ (φ :: φs).take (maxTimeFieldPos φ φs)) •
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofStateList (eraseMaxTimeField φ φs)) := by
rw [timeOrder_ofStateList, timeOrderList_eq_maxTimeField_timeOrderList]
rw [ofStateList_cons, timeOrder_ofStateList]
simp only [instCommGroup.eq_1, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_smul]
congr
rw [timerOrderSign_of_eraseMaxTimeField, mul_assoc]
simp
/-- In the state algebra time, ordering obeys `T(φ₀φ₁…φₙ) = s * φᵢ * T(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`
where `φᵢ` is the state
which has maximum time and `s` is the exchange sign of `φᵢ` and `φ₀φ₁…φᵢ₋₁`.
Here `s` is written using finite sets. -/
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.States) :
𝓣ᶠ(ofStateList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
(Finset.filter (fun x =>
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) •
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofStateList (eraseMaxTimeField φ φs)) := by
rw [timeOrder_eq_maxTimeField_mul]
congr 3
apply FieldStatistic.ofList_perm
nth_rewrite 1 [← List.finRange_map_get (φ :: φs)]
simp only [List.length_cons, eraseMaxTimeField, insertionSortDropMinPos]
rw [eraseIdx_get, ← List.map_take, ← List.map_map]
refine List.Perm.map (φ :: φs).get ?_
apply (List.perm_ext_iff_of_nodup _ _).mpr
· intro i
simp only [List.length_cons, maxTimeFieldPos, mem_take_finrange, Fin.val_fin_lt, List.mem_map,
Finset.mem_sort, Finset.mem_filter, Finset.mem_univ, true_and, Function.comp_apply]
refine Iff.intro (fun hi => ?_) (fun h => ?_)
· have h2 := (maxTimeFieldPosFin φ φs).2
simp only [eraseMaxTimeField, insertionSortDropMinPos, List.length_cons, Nat.succ_eq_add_one,
maxTimeFieldPosFin, insertionSortMinPosFin] at h2
use ⟨i, by omega⟩
apply And.intro
· simp only [Fin.succAbove, List.length_cons, Fin.castSucc_mk, maxTimeFieldPosFin,
insertionSortMinPosFin, Nat.succ_eq_add_one, Fin.mk_lt_mk, Fin.val_fin_lt, Fin.succ_mk]
rw [Fin.lt_def]
split
· simp only [Fin.val_fin_lt]
omega
· omega
· simp only [Fin.succAbove, List.length_cons, Fin.castSucc_mk, Fin.succ_mk, Fin.ext_iff,
Fin.coe_cast]
split
· simp
· simp_all [Fin.lt_def]
· obtain ⟨j, h1, h2⟩ := h
subst h2
simp only [Fin.lt_def, Fin.coe_cast]
exact h1
· exact List.Sublist.nodup (List.take_sublist _ _) <|
List.nodup_finRange (φs.length + 1)
· refine List.Nodup.map ?_ ?_
· refine Function.Injective.comp ?hf.hg Fin.succAbove_right_injective
exact Fin.cast_injective (eraseIdx_length (φ :: φs) (insertionSortMinPos timeOrderRel φ φs))
· exact Finset.sort_nodup (fun x1 x2 => x1 ≤ x2)
(Finset.filter (fun x => (maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs)
Finset.univ)
/-!
## Norm-time order
-/
/-- The normal-time ordering on `CrAnAlgebra`. -/
def normTimeOrder : CrAnAlgebra 𝓕 →ₗ[] CrAnAlgebra 𝓕 :=
Basis.constr ofCrAnListBasis fun φs =>
normTimeOrderSign φs • ofCrAnList (normTimeOrderList φs)
end
end CrAnAlgebra
end FieldSpecification