185 lines
6.6 KiB
Text
185 lines
6.6 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzTensor.RisingLowering
|
||
import Mathlib.RepresentationTheory.Basic
|
||
/-!
|
||
|
||
# Structure to form Lorentz-style Tensor
|
||
|
||
-/
|
||
|
||
noncomputable section
|
||
|
||
open TensorProduct
|
||
|
||
variable {R : Type} [CommSemiring R]
|
||
|
||
/-! TODO: Add preservation of the unit, and the metric. -/
|
||
/-- A `DualizeTensorStructure` with a group action. -/
|
||
structure LorentzTensorStructure (R : Type) [CommSemiring R]
|
||
(G : Type) [Group G] extends DualizeTensorStructure R where
|
||
/-- For each color `μ` a representation of `G` on `ColorModule μ`. -/
|
||
repColorModule : (μ : Color) → Representation R G (ColorModule μ)
|
||
/-- The contraction of a vector with its dual is invariant under the group action. -/
|
||
contrDual_inv : ∀ μ g, contrDual μ ∘ₗ
|
||
TensorProduct.map (repColorModule μ g) (repColorModule (τ μ) g) = contrDual μ
|
||
|
||
namespace LorentzTensorStructure
|
||
open TensorStructure
|
||
|
||
variable {G : Type} [Group G]
|
||
|
||
variable (𝓣 : LorentzTensorStructure R G)
|
||
|
||
variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
|
||
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||
|
||
/-- The representation of the group `G` on the vector space of tensors. -/
|
||
def rep : Representation R G (𝓣.Tensor cX) where
|
||
toFun g := PiTensorProduct.map (fun x => 𝓣.repColorModule (cX x) g)
|
||
map_one' := by
|
||
simp_all only [_root_.map_one, PiTensorProduct.map_one]
|
||
map_mul' g g' := by
|
||
simp_all only [_root_.map_mul]
|
||
exact PiTensorProduct.map_mul _ _
|
||
|
||
local infixl:78 " • " => 𝓣.rep
|
||
|
||
lemma repColorModule_colorModuleCast_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) :
|
||
(𝓣.repColorModule ν g) (𝓣.colorModuleCast h x) =
|
||
(𝓣.colorModuleCast h) (𝓣.repColorModule μ g x) := by
|
||
subst h
|
||
simp [colorModuleCast]
|
||
|
||
@[simp]
|
||
lemma repColorModule_colorModuleCast (h : μ = ν) (g : G) :
|
||
(𝓣.repColorModule ν g) ∘ₗ (𝓣.colorModuleCast h).toLinearMap =
|
||
(𝓣.colorModuleCast h).toLinearMap ∘ₗ (𝓣.repColorModule μ g) := by
|
||
apply LinearMap.ext
|
||
intro x
|
||
simp [repColorModule_colorModuleCast_apply]
|
||
|
||
@[simp]
|
||
lemma rep_mapIso (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) :
|
||
(𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap = (𝓣.mapIso e h).toLinearMap ∘ₗ 𝓣.rep g := by
|
||
apply PiTensorProduct.ext
|
||
apply MultilinearMap.ext
|
||
intro x
|
||
simp only [LinearMap.compMultilinearMap_apply, LinearMap.coe_comp, LinearEquiv.coe_coe,
|
||
Function.comp_apply]
|
||
erw [mapIso_tprod]
|
||
simp [rep, repColorModule_colorModuleCast_apply]
|
||
change (PiTensorProduct.map fun x => (𝓣.repColorModule (cY x)) g)
|
||
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (x (e.symm i))) =
|
||
(𝓣.mapIso e h) ((PiTensorProduct.map _) ((PiTensorProduct.tprod R) x))
|
||
rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod, mapIso_tprod]
|
||
apply congrArg
|
||
funext i
|
||
subst h
|
||
simp [repColorModule_colorModuleCast_apply]
|
||
|
||
@[simp]
|
||
lemma rep_mapIso_apply (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) (x : 𝓣.Tensor cX) :
|
||
g • (𝓣.mapIso e h x) = (𝓣.mapIso e h) (g • x) := by
|
||
trans ((𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap) x
|
||
rfl
|
||
simp
|
||
|
||
@[simp]
|
||
lemma rep_tprod (g : G) (f : (i : X) → 𝓣.ColorModule (cX i)) :
|
||
g • (PiTensorProduct.tprod R f) = PiTensorProduct.tprod R (fun x =>
|
||
𝓣.repColorModule (cX x) g (f x)) := by
|
||
simp [rep]
|
||
change (PiTensorProduct.map _) ((PiTensorProduct.tprod R) f) = _
|
||
rw [PiTensorProduct.map_tprod]
|
||
|
||
/-!
|
||
|
||
## Group acting on tensor products
|
||
|
||
-/
|
||
|
||
lemma rep_tensoratorEquiv (g : G) :
|
||
(𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.rep g ∘ₗ
|
||
(𝓣.tensoratorEquiv cX cY).toLinearMap := by
|
||
apply tensorProd_piTensorProd_ext
|
||
intro p q
|
||
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, map_tmul, rep_tprod,
|
||
tensoratorEquiv_tmul_tprod]
|
||
apply congrArg
|
||
funext x
|
||
match x with
|
||
| Sum.inl x => rfl
|
||
| Sum.inr x => rfl
|
||
|
||
lemma rep_tensoratorEquiv_apply (g : G) (x : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) :
|
||
(𝓣.tensoratorEquiv cX cY) ((TensorProduct.map (𝓣.rep g) (𝓣.rep g)) x)
|
||
= (𝓣.rep g) ((𝓣.tensoratorEquiv cX cY) x) := by
|
||
trans ((𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x
|
||
rfl
|
||
rw [rep_tensoratorEquiv]
|
||
rfl
|
||
|
||
lemma rep_tensoratorEquiv_tmul (g : G) (x : 𝓣.Tensor cX) (y : 𝓣.Tensor cY) :
|
||
(𝓣.tensoratorEquiv cX cY) ((g • x) ⊗ₜ[R] (g • y)) =
|
||
g • ((𝓣.tensoratorEquiv cX cY) (x ⊗ₜ[R] y)) := by
|
||
nth_rewrite 1 [← rep_tensoratorEquiv_apply]
|
||
rfl
|
||
|
||
/-!
|
||
|
||
## Group acting on contraction
|
||
|
||
-/
|
||
|
||
@[simp]
|
||
lemma contrAll_rep {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) :
|
||
𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.contrAll e h := by
|
||
apply TensorProduct.ext'
|
||
refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by
|
||
intro a b hx hy y
|
||
simp [map_add, add_tmul, hx, hy])
|
||
intro rx fx
|
||
refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hx hy
|
||
simp at hx hy
|
||
simp [map_add, tmul_add, hx, hy])
|
||
intro ry fy
|
||
simp [contrAll, TensorProduct.smul_tmul]
|
||
apply congrArg
|
||
apply congrArg
|
||
simp [contrAll']
|
||
apply congrArg
|
||
simp [pairProd]
|
||
change (PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _) =
|
||
(PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _)
|
||
rw [PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map_tprod,
|
||
PiTensorProduct.map_tprod]
|
||
simp only [mk_apply]
|
||
apply congrArg
|
||
funext x
|
||
rw [← repColorModule_colorModuleCast_apply]
|
||
nth_rewrite 2 [← 𝓣.contrDual_inv (c x) g]
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma contrAll_rep_apply {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
|
||
(g : G) (x : 𝓣.Tensor c ⊗ 𝓣.Tensor d) :
|
||
𝓣.contrAll e h (TensorProduct.map (𝓣.rep g) (𝓣.rep g) x) = 𝓣.contrAll e h x := by
|
||
change (𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x = _
|
||
rw [contrAll_rep]
|
||
|
||
@[simp]
|
||
lemma contrAll_rep_tmul {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
|
||
(g : G) (x : 𝓣.Tensor c) (y : 𝓣.Tensor d) :
|
||
𝓣.contrAll e h ((g • x) ⊗ₜ[R] (g • y)) = 𝓣.contrAll e h (x ⊗ₜ[R] y) := by
|
||
nth_rewrite 2 [← contrAll_rep_apply]
|
||
rfl
|
||
|
||
end LorentzTensorStructure
|
||
|
||
end
|