PhysLean/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean
2024-07-03 07:56:30 -04:00

76 lines
2.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SM.Basic
import HepLean.AnomalyCancellation.SM.NoGrav.Basic
import HepLean.AnomalyCancellation.SM.NoGrav.One.LinearParameterization
/-!
# Lemmas for 1 family SM Accs
The main result of this file is the conclusion of this paper:
[Lohitsiri and Tong][Lohitsiri:2019fuu]
That every solution to the ACCs without gravity satisfies for free the gravitational anomaly.
-/
universe v u
namespace SM
namespace SMNoGrav
namespace One
open SMCharges
open SMACCs
open BigOperators
lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
E S.val (0 : Fin 1) = 0 := by
let S' := linearParameters.bijection.symm S.1.1
have hC := cubeSol S
have hS' := congrArg (fun S => S.val) (linearParameters.bijection.right_inv S.1.1)
change S'.asCharges = S.val at hS'
rw [← hS'] at hC
apply Iff.intro
intro hQ
exact S'.cubic_zero_Q'_zero hC hQ
intro hE
exact S'.cubic_zero_E'_zero hC hE
lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
accGrav S.val = 0 := by
rw [accGrav]
simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
erw [hQ, E_zero_iff_Q_zero.mp hQ]
have h1 := SU2Sol S.1.1
have h2 := SU3Sol S.1.1
simp only [accSU2, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk, accSU3] at h1 h2
erw [hQ] at h1 h2
simp_all
linear_combination 3 * h2
lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0)
(FLTThree : FermatLastTheoremWith 3) :
accGrav S.val = 0 := by
have hE := E_zero_iff_Q_zero.mpr.mt hQ
let S' := linearParametersQENeqZero.bijection.symm ⟨S.1.1, And.intro hQ hE⟩
have hC := cubeSol S
have hS' := congrArg (fun S => S.val.val)
(linearParametersQENeqZero.bijection.right_inv ⟨S.1.1, And.intro hQ hE⟩)
change _ = S.val at hS'
rw [← hS'] at hC
rw [← hS']
exact S'.grav_of_cubic hC FLTThree
/-- Any solution to the ACCs without gravity satisfies the gravitational ACC. -/
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} (FLTThree : FermatLastTheoremWith 3) :
accGrav S.val = 0 := by
by_cases hQ : Q S.val (0 : Fin 1)= 0
exact accGrav_Q_zero hQ
exact accGrav_Q_neq_zero hQ FLTThree
end One
end SMNoGrav
end SM