76 lines
2.5 KiB
Text
76 lines
2.5 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.AnomalyCancellation.SM.Basic
|
||
import HepLean.AnomalyCancellation.SM.NoGrav.Basic
|
||
import HepLean.AnomalyCancellation.SM.NoGrav.One.LinearParameterization
|
||
/-!
|
||
# Lemmas for 1 family SM Accs
|
||
|
||
The main result of this file is the conclusion of this paper:
|
||
[Lohitsiri and Tong][Lohitsiri:2019fuu]
|
||
|
||
That every solution to the ACCs without gravity satisfies for free the gravitational anomaly.
|
||
-/
|
||
|
||
universe v u
|
||
namespace SM
|
||
namespace SMNoGrav
|
||
namespace One
|
||
|
||
open SMCharges
|
||
open SMACCs
|
||
open BigOperators
|
||
|
||
lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
|
||
E S.val (0 : Fin 1) = 0 := by
|
||
let S' := linearParameters.bijection.symm S.1.1
|
||
have hC := cubeSol S
|
||
have hS' := congrArg (fun S => S.val) (linearParameters.bijection.right_inv S.1.1)
|
||
change S'.asCharges = S.val at hS'
|
||
rw [← hS'] at hC
|
||
apply Iff.intro
|
||
intro hQ
|
||
exact S'.cubic_zero_Q'_zero hC hQ
|
||
intro hE
|
||
exact S'.cubic_zero_E'_zero hC hE
|
||
|
||
lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
|
||
accGrav S.val = 0 := by
|
||
rw [accGrav]
|
||
simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
|
||
erw [hQ, E_zero_iff_Q_zero.mp hQ]
|
||
have h1 := SU2Sol S.1.1
|
||
have h2 := SU3Sol S.1.1
|
||
simp only [accSU2, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk, accSU3] at h1 h2
|
||
erw [hQ] at h1 h2
|
||
simp_all
|
||
linear_combination 3 * h2
|
||
|
||
lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0)
|
||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||
accGrav S.val = 0 := by
|
||
have hE := E_zero_iff_Q_zero.mpr.mt hQ
|
||
let S' := linearParametersQENeqZero.bijection.symm ⟨S.1.1, And.intro hQ hE⟩
|
||
have hC := cubeSol S
|
||
have hS' := congrArg (fun S => S.val.val)
|
||
(linearParametersQENeqZero.bijection.right_inv ⟨S.1.1, And.intro hQ hE⟩)
|
||
change _ = S.val at hS'
|
||
rw [← hS'] at hC
|
||
rw [← hS']
|
||
exact S'.grav_of_cubic hC FLTThree
|
||
|
||
/-- Any solution to the ACCs without gravity satisfies the gravitational ACC. -/
|
||
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} (FLTThree : FermatLastTheoremWith ℚ 3) :
|
||
accGrav S.val = 0 := by
|
||
by_cases hQ : Q S.val (0 : Fin 1)= 0
|
||
exact accGrav_Q_zero hQ
|
||
exact accGrav_Q_neq_zero hQ FLTThree
|
||
|
||
end One
|
||
end SMNoGrav
|
||
end SM
|