339 lines
12 KiB
Text
339 lines
12 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.ComplexLorentz.BasisTrees
|
||
/-!
|
||
|
||
## Lowering indices of Pauli matrices.
|
||
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
noncomputable section
|
||
|
||
namespace Fermion
|
||
open complexLorentzTensor
|
||
|
||
/-- The map to color one gets when lowering the indices of pauli matrices. -/
|
||
def pauliCoMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
|
||
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1)
|
||
|
||
lemma pauliMatrix_contr_down_0 :
|
||
(contr 1 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor
|
||
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
||
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
|
||
conv =>
|
||
lhs
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
||
rw [contrBasisVectorMul_pos (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_pos (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; rhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; rhs; lhs;
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; rhs; rhs; lhs;
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs
|
||
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
||
congr 1
|
||
· rw [basisVectorContrPauli]
|
||
congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· rw [basisVectorContrPauli]
|
||
congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_down_1 :
|
||
{(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗
|
||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||
= basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||
+ basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
|
||
conv =>
|
||
lhs
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_pos (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_pos (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; rhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; rhs; lhs;
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; rhs; rhs; lhs;
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs
|
||
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
||
congr 1
|
||
· rw [basisVectorContrPauli]
|
||
congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· rw [basisVectorContrPauli]
|
||
congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_down_2 :
|
||
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗
|
||
PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
||
= (- I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||
+ (I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
|
||
conv =>
|
||
lhs
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
||
rw [contrBasisVectorMul_pos (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; rhs; rhs; lhs
|
||
rw [contrBasisVectorMul_pos (by decide)]
|
||
conv =>
|
||
lhs; lhs; rhs; lhs;
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; rhs; rhs; lhs;
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs
|
||
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
||
congr 1
|
||
· rw [basisVectorContrPauli]
|
||
congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· rw [basisVectorContrPauli]
|
||
congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_down_3 :
|
||
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
||
PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
||
= basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||
+ (- 1 : ℂ) • basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||
conv =>
|
||
lhs
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; lhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; lhs; rhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; lhs; rhs; rhs; lhs
|
||
rw [contrBasisVectorMul_neg (by decide)]
|
||
conv =>
|
||
lhs; lhs; rhs; lhs;
|
||
rw [contrBasisVectorMul_pos (by decide)]
|
||
conv =>
|
||
lhs; rhs; rhs; lhs;
|
||
rw [contrBasisVectorMul_pos (by decide)]
|
||
conv =>
|
||
lhs
|
||
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
|
||
congr 1
|
||
· rw [basisVectorContrPauli]
|
||
congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· rw [basisVectorContrPauli]
|
||
congr 1
|
||
congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
||
|
||
lemma tensoreNode_pauliCo : (tensorNode pauliCo).tensor =
|
||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor := by
|
||
rw [pauliCo]
|
||
rfl
|
||
|
||
set_option profiler true
|
||
set_option profiler.threshold 10
|
||
lemma pauliCo_basis_expand : pauliCo
|
||
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
||
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
|
||
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
|
||
+ I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||
- I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
|
||
- basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||
+ basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||
conv =>
|
||
lhs
|
||
rw [pauliCo]
|
||
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
|
||
/- Moving the prod through additions. -/
|
||
rw [contr_tensor_eq <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
/- Moving the prod through smuls. -/
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||
<| smul_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| smul_prod _ _ _]
|
||
/- Moving contraction through addition. -/
|
||
rw [contr_add]
|
||
rw [add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
/- Moving contraction through smul. -/
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
|
||
simp only [tensorNode_tensor, add_tensor, smul_tensor]
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, neg_smul, one_smul]
|
||
conv =>
|
||
lhs; lhs;
|
||
rw [pauliMatrix_contr_down_0]
|
||
conv =>
|
||
lhs; rhs; lhs; rhs;
|
||
rw [pauliMatrix_contr_down_1]
|
||
conv =>
|
||
lhs; rhs; rhs; lhs; rhs;
|
||
rw [pauliMatrix_contr_down_2]
|
||
conv =>
|
||
lhs; rhs; rhs; rhs; rhs;
|
||
rw [pauliMatrix_contr_down_3]
|
||
simp only [neg_smul, one_smul]
|
||
abel
|
||
|
||
lemma pauliCo_basis_expand_tree : pauliCo
|
||
= (TensorTree.add (tensorNode
|
||
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
||
TensorTree.add (tensorNode
|
||
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
|
||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
|
||
TensorTree.add (TensorTree.smul I (tensorNode
|
||
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
||
TensorTree.add (TensorTree.smul (-I) (tensorNode
|
||
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
|
||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||
(basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
|
||
(tensorNode (basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
|
||
rw [pauliCo_basis_expand]
|
||
simp only [Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul,
|
||
one_smul]
|
||
rfl
|
||
|
||
lemma pauliCo_prod_basis_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(t : TensorTree complexLorentzTensor c) :
|
||
(prod (tensorNode pauliCo) t).tensor =
|
||
(((tensorNode
|
||
(basisVector pauliCoMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
|
||
(((tensorNode
|
||
(basisVector pauliCoMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
|
||
((TensorTree.smul (-1) ((tensorNode
|
||
(basisVector pauliCoMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
|
||
((TensorTree.smul (-1) ((tensorNode
|
||
(basisVector pauliCoMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
|
||
((TensorTree.smul I ((tensorNode
|
||
(basisVector pauliCoMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
|
||
((TensorTree.smul (-I) ((tensorNode
|
||
(basisVector pauliCoMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
|
||
((TensorTree.smul (-1) ((tensorNode
|
||
(basisVector pauliCoMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
|
||
((tensorNode
|
||
(basisVector pauliCoMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
|
||
t)))))))).tensor := by
|
||
rw [prod_tensor_eq_fst <| tensoreNode_pauliCo]
|
||
rw [prod_tensor_eq_fst <| pauliCo_basis_expand_tree]
|
||
/- Moving the prod through additions. -/
|
||
rw [add_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
/- Moving the prod through smuls. -/
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||
smul_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||
smul_prod _ _ _]
|
||
|
||
end Fermion
|