447 lines
24 KiB
Text
447 lines
24 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Lorentz.PauliMatrices.Basic
|
||
/-!
|
||
|
||
## Interaction of Pauli matrices with self-adjoint matrices
|
||
|
||
-/
|
||
namespace PauliMatrix
|
||
open Matrix
|
||
|
||
/-- The trace of `σ0` multiplied by a self-adjiont `2×2` matrix is real. -/
|
||
lemma selfAdjoint_trace_σ0_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
(Matrix.trace (σ0 * A.1)).re = Matrix.trace (σ0 * A.1) := by
|
||
rw [eta_fin_two A.1]
|
||
simp only [σ0, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add]
|
||
have hA : IsSelfAdjoint A.1 := A.2
|
||
rw [isSelfAdjoint_iff, star_eq_conjTranspose] at hA
|
||
rw [eta_fin_two (A.1)ᴴ] at hA
|
||
simp only [Fin.isValue, conjTranspose_apply, RCLike.star_def, of_apply, cons_val', cons_val_zero,
|
||
empty_val', cons_val_fin_one, cons_val_one, head_cons, head_fin_const] at hA
|
||
have h00 := congrArg (fun f => f 0 0) hA
|
||
simp only [Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one] at h00
|
||
have hA00 : A.1 0 0 = (A.1 0 0).re := by
|
||
exact Eq.symm ((fun {z} => Complex.conj_eq_iff_re.mp) h00)
|
||
rw [hA00]
|
||
simp only [Fin.isValue, Complex.ofReal_re, add_right_inj]
|
||
have h11 := congrArg (fun f => f 1 1) hA
|
||
simp only [Fin.isValue, of_apply, cons_val', cons_val_one, head_cons, empty_val',
|
||
cons_val_fin_one, head_fin_const] at h11
|
||
exact Complex.conj_eq_iff_re.mp h11
|
||
|
||
/-- The trace of `σ1` multiplied by a self-adjiont `2×2` matrix is real. -/
|
||
lemma selfAdjoint_trace_σ1_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
(Matrix.trace (σ1 * A.1)).re = Matrix.trace (σ1 * A.1) := by
|
||
rw [eta_fin_two A.1]
|
||
simp only [σ1, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add]
|
||
have hA : IsSelfAdjoint A.1 := A.2
|
||
rw [isSelfAdjoint_iff, star_eq_conjTranspose] at hA
|
||
rw [eta_fin_two (A.1)ᴴ] at hA
|
||
simp only [Fin.isValue, conjTranspose_apply, RCLike.star_def] at hA
|
||
have h01 := congrArg (fun f => f 0 1) hA
|
||
simp only [Fin.isValue, of_apply, cons_val', cons_val_one, head_cons, empty_val',
|
||
cons_val_fin_one, cons_val_zero] at h01
|
||
rw [← h01]
|
||
simp only [Fin.isValue, Complex.conj_re]
|
||
rw [Complex.add_conj]
|
||
simp only [Fin.isValue, Complex.ofReal_mul, Complex.ofReal_ofNat]
|
||
ring
|
||
|
||
/-- The trace of `σ2` multiplied by a self-adjiont `2×2` matrix is real. -/
|
||
lemma selfAdjoint_trace_σ2_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
(Matrix.trace (σ2 * A.1)).re = Matrix.trace (σ2 * A.1) := by
|
||
rw [eta_fin_two A.1]
|
||
simp only [σ2, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add]
|
||
have hA : IsSelfAdjoint A.1 := A.2
|
||
rw [isSelfAdjoint_iff, star_eq_conjTranspose, eta_fin_two (A.1)ᴴ] at hA
|
||
simp only [Fin.isValue, conjTranspose_apply, RCLike.star_def] at hA
|
||
have h10 := congrArg (fun f => f 1 0) hA
|
||
simp only [Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one,
|
||
cons_val_one, head_fin_const] at h10
|
||
rw [← h10]
|
||
simp only [Fin.isValue, neg_smul, smul_cons, smul_eq_mul, smul_empty, neg_cons, neg_empty,
|
||
trace_fin_two_of, Complex.add_re, Complex.neg_re, Complex.mul_re, Complex.I_re, Complex.conj_re,
|
||
zero_mul, Complex.I_im, Complex.conj_im, mul_neg, one_mul, sub_neg_eq_add, zero_add, zero_sub,
|
||
Complex.ofReal_add, Complex.ofReal_neg]
|
||
trans Complex.I * (A.1 0 1 - (starRingEnd ℂ) (A.1 0 1))
|
||
· rw [Complex.sub_conj]
|
||
ring_nf
|
||
simp
|
||
· ring
|
||
|
||
/-- The trace of `σ3` multiplied by a self-adjiont `2×2` matrix is real. -/
|
||
lemma selfAdjoint_trace_σ3_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
(Matrix.trace (σ3 * A.1)).re = Matrix.trace (σ3 * A.1) := by
|
||
rw [eta_fin_two A.1]
|
||
simp only [σ3, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add]
|
||
have hA : IsSelfAdjoint A.1 := A.2
|
||
rw [isSelfAdjoint_iff, star_eq_conjTranspose, eta_fin_two (A.1)ᴴ] at hA
|
||
simp only [Fin.isValue, conjTranspose_apply, RCLike.star_def] at hA
|
||
have h00 := congrArg (fun f => f 0 0) hA
|
||
have h11 := congrArg (fun f => f 1 1) hA
|
||
have hA00 : A.1 0 0 = (A.1 0 0).re := Eq.symm ((fun {z} => Complex.conj_eq_iff_re.mp) h00)
|
||
have hA11 : A.1 1 1 = (A.1 1 1).re := Eq.symm ((fun {z} => Complex.conj_eq_iff_re.mp) h11)
|
||
simp only [Fin.isValue, neg_smul, one_smul, neg_cons, neg_empty, trace_fin_two_of, Complex.add_re,
|
||
Complex.neg_re, Complex.ofReal_add, Complex.ofReal_neg]
|
||
rw [hA00, hA11]
|
||
simp
|
||
|
||
open Complex
|
||
|
||
/-- Two `2×2` self-adjiont matrices are equal if the (complex) traces of each matrix multiplied by
|
||
each of the Pauli-matrices are equal. -/
|
||
lemma selfAdjoint_ext_complex {A B : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)}
|
||
(h0 : Matrix.trace (PauliMatrix.σ0 * A.1) = Matrix.trace (PauliMatrix.σ0 * B.1))
|
||
(h1 : Matrix.trace (PauliMatrix.σ1 * A.1) = Matrix.trace (PauliMatrix.σ1 * B.1))
|
||
(h2 : Matrix.trace (PauliMatrix.σ2 * A.1) = Matrix.trace (PauliMatrix.σ2 * B.1))
|
||
(h3 : Matrix.trace (PauliMatrix.σ3 * A.1) = Matrix.trace (PauliMatrix.σ3 * B.1)) : A = B := by
|
||
ext i j
|
||
rw [eta_fin_two A.1, eta_fin_two B.1] at h0 h1 h2 h3
|
||
simp only [PauliMatrix.σ0, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons,
|
||
head_cons, one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of] at h0
|
||
simp only [σ1, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
zero_smul, tail_cons, one_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of] at h1
|
||
simp only [σ2, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
zero_smul, tail_cons, neg_smul, smul_cons, smul_eq_mul, smul_empty, neg_cons, neg_empty,
|
||
empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply, trace_fin_two_of] at h2
|
||
simp only [σ3, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, neg_smul, neg_cons, neg_empty, zero_add,
|
||
empty_mul, Equiv.symm_apply_apply, trace_fin_two_of] at h3
|
||
match i, j with
|
||
| 0, 0 =>
|
||
linear_combination (norm := ring_nf) (h0 + h3) / 2
|
||
| 0, 1 =>
|
||
linear_combination (norm := ring_nf) (h1 - I * h2) / 2
|
||
simp
|
||
| 1, 0 =>
|
||
linear_combination (norm := ring_nf) (h1 + I * h2) / 2
|
||
simp
|
||
| 1, 1 =>
|
||
linear_combination (norm := ring_nf) (h0 - h3) / 2
|
||
|
||
/-- Two `2×2` self-adjiont matrices are equal if the real traces of each matrix multiplied by
|
||
each of the Pauli-matrices are equal. -/
|
||
lemma selfAdjoint_ext {A B : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)}
|
||
(h0 : ((Matrix.trace (PauliMatrix.σ0 * A.1))).re = ((Matrix.trace (PauliMatrix.σ0 * B.1))).re)
|
||
(h1 : ((Matrix.trace (PauliMatrix.σ1 * A.1))).re = ((Matrix.trace (PauliMatrix.σ1 * B.1))).re)
|
||
(h2 : ((Matrix.trace (PauliMatrix.σ2 * A.1))).re = ((Matrix.trace (PauliMatrix.σ2 * B.1))).re)
|
||
(h3 : ((Matrix.trace (PauliMatrix.σ3 * A.1))).re = ((Matrix.trace (PauliMatrix.σ3 * B.1))).re) :
|
||
A = B := by
|
||
have h0' := congrArg ofRealHom h0
|
||
have h1' := congrArg ofRealHom h1
|
||
have h2' := congrArg ofRealHom h2
|
||
have h3' := congrArg ofRealHom h3
|
||
rw [ofRealHom_eq_coe, ofRealHom_eq_coe] at h0' h1' h2' h3'
|
||
rw [selfAdjoint_trace_σ0_real A, selfAdjoint_trace_σ0_real B] at h0'
|
||
rw [selfAdjoint_trace_σ1_real A, selfAdjoint_trace_σ1_real B] at h1'
|
||
rw [selfAdjoint_trace_σ2_real A, selfAdjoint_trace_σ2_real B] at h2'
|
||
rw [selfAdjoint_trace_σ3_real A, selfAdjoint_trace_σ3_real B] at h3'
|
||
exact selfAdjoint_ext_complex h0' h1' h2' h3'
|
||
|
||
noncomputable section
|
||
|
||
/-- An auxillary function which on `i : Fin 1 ⊕ Fin 3` returns the corresponding
|
||
Pauli-matrix as a self-adjoint matrix. -/
|
||
def σSA' (i : Fin 1 ⊕ Fin 3) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) :=
|
||
match i with
|
||
| Sum.inl 0 => ⟨σ0, σ0_selfAdjoint⟩
|
||
| Sum.inr 0 => ⟨σ1, σ1_selfAdjoint⟩
|
||
| Sum.inr 1 => ⟨σ2, σ2_selfAdjoint⟩
|
||
| Sum.inr 2 => ⟨σ3, σ3_selfAdjoint⟩
|
||
|
||
/-- The Pauli matrices are linearly independent. -/
|
||
lemma σSA_linearly_independent : LinearIndependent ℝ σSA' := by
|
||
apply Fintype.linearIndependent_iff.mpr
|
||
intro g hg
|
||
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton] at hg
|
||
rw [Fin.sum_univ_three] at hg
|
||
simp only [Fin.isValue, σSA'] at hg
|
||
intro i
|
||
match i with
|
||
| Sum.inl 0 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ0 * A.1))) hg
|
||
| Sum.inr 0 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ1 * A.1))) hg
|
||
| Sum.inr 1 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ2 * A.1))) hg
|
||
| Sum.inr 2 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ3 * A.1))) hg
|
||
|
||
/-- The Pauli matrices span all self-adjoint matrices. -/
|
||
lemma σSA_span : ⊤ ≤ Submodule.span ℝ (Set.range σSA') := by
|
||
refine (top_le_span_range_iff_forall_exists_fun ℝ).mpr ?_
|
||
intro A
|
||
let c : Fin 1 ⊕ Fin 3 → ℝ := fun i =>
|
||
match i with
|
||
| Sum.inl 0 => 1/2 * (Matrix.trace (σ0 * A.1)).re
|
||
| Sum.inr 0 => 1/2 * (Matrix.trace (σ1 * A.1)).re
|
||
| Sum.inr 1 => 1/2 * (Matrix.trace (σ2 * A.1)).re
|
||
| Sum.inr 2 => 1/2 * (Matrix.trace (σ3 * A.1)).re
|
||
use c
|
||
simp only [one_div, Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton, Fin.sum_univ_three, c]
|
||
apply selfAdjoint_ext
|
||
· simp only [σSA', AddSubgroup.coe_add, selfAdjoint.val_smul, mul_add, Algebra.mul_smul_comm,
|
||
trace_add, trace_smul, σ0_σ0_trace, real_smul, ofReal_mul, ofReal_inv, ofReal_ofNat,
|
||
σ0_σ1_trace, smul_zero, σ0_σ2_trace, add_zero, σ0_σ3_trace, mul_re, inv_re, re_ofNat,
|
||
normSq_ofNat, div_self_mul_self', ofReal_re, inv_im, im_ofNat, neg_zero, zero_div, ofReal_im,
|
||
mul_zero, sub_zero, mul_im, zero_mul]
|
||
ring
|
||
· simp only [σSA', AddSubgroup.coe_add, selfAdjoint.val_smul, mul_add, Algebra.mul_smul_comm,
|
||
trace_add, trace_smul, σ1_σ0_trace, smul_zero, σ1_σ1_trace, real_smul, ofReal_mul, ofReal_inv,
|
||
ofReal_ofNat, σ1_σ2_trace, add_zero, σ1_σ3_trace, zero_add, mul_re, inv_re, re_ofNat,
|
||
normSq_ofNat, div_self_mul_self', ofReal_re, inv_im, im_ofNat, neg_zero, zero_div, ofReal_im,
|
||
mul_zero, sub_zero, mul_im, zero_mul]
|
||
ring
|
||
· simp only [σSA', AddSubgroup.coe_add, selfAdjoint.val_smul, mul_add, Algebra.mul_smul_comm,
|
||
trace_add, trace_smul, σ2_σ0_trace, smul_zero, σ2_σ1_trace, σ2_σ2_trace, real_smul, ofReal_mul,
|
||
ofReal_inv, ofReal_ofNat, zero_add, σ2_σ3_trace, add_zero, mul_re, inv_re, re_ofNat,
|
||
normSq_ofNat, div_self_mul_self', ofReal_re, inv_im, im_ofNat, neg_zero, zero_div, ofReal_im,
|
||
mul_zero, sub_zero, mul_im, zero_mul]
|
||
ring
|
||
· simp only [σSA', AddSubgroup.coe_add, selfAdjoint.val_smul, mul_add, Algebra.mul_smul_comm,
|
||
trace_add, trace_smul, σ3_σ0_trace, smul_zero, σ3_σ1_trace, σ3_σ2_trace, add_zero, σ3_σ3_trace,
|
||
real_smul, ofReal_mul, ofReal_inv, ofReal_ofNat, zero_add, mul_re, inv_re, re_ofNat,
|
||
normSq_ofNat, div_self_mul_self', ofReal_re, inv_im, im_ofNat, neg_zero, zero_div, ofReal_im,
|
||
mul_zero, sub_zero, mul_im, zero_mul]
|
||
ring
|
||
|
||
/-- The basis of `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` formed by Pauli matrices. -/
|
||
def σSA : Basis (Fin 1 ⊕ Fin 3) ℝ (selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :=
|
||
Basis.mk σSA_linearly_independent σSA_span
|
||
|
||
/-- An auxillary function which on `i : Fin 1 ⊕ Fin 3` returns the corresponding
|
||
Pauli-matrix as a self-adjoint matrix with a minus sign for `Sum.inr _`. -/
|
||
def σSAL' (i : Fin 1 ⊕ Fin 3) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) :=
|
||
match i with
|
||
| Sum.inl 0 => ⟨σ0, σ0_selfAdjoint⟩
|
||
| Sum.inr 0 => ⟨-σ1, by rw [neg_mem_iff]; exact σ1_selfAdjoint⟩
|
||
| Sum.inr 1 => ⟨-σ2, by rw [neg_mem_iff]; exact σ2_selfAdjoint⟩
|
||
| Sum.inr 2 => ⟨-σ3, by rw [neg_mem_iff]; exact σ3_selfAdjoint⟩
|
||
|
||
/-- The Pauli matrices where `σi` are negated are linearly independent. -/
|
||
lemma σSAL_linearly_independent : LinearIndependent ℝ σSAL' := by
|
||
apply Fintype.linearIndependent_iff.mpr
|
||
intro g hg
|
||
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton] at hg
|
||
rw [Fin.sum_univ_three] at hg
|
||
simp only [Fin.isValue, σSAL'] at hg
|
||
intro i
|
||
match i with
|
||
| Sum.inl 0 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ0 * A.1))) hg
|
||
| Sum.inr 0 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ1 * A.1))) hg
|
||
| Sum.inr 1 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ2 * A.1))) hg
|
||
| Sum.inr 2 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ3 * A.1))) hg
|
||
|
||
/-- The Pauli matrices where `σi` are negated span all Self-adjoint matrices. -/
|
||
lemma σSAL_span : ⊤ ≤ Submodule.span ℝ (Set.range σSAL') := by
|
||
refine (top_le_span_range_iff_forall_exists_fun ℝ).mpr ?_
|
||
intro A
|
||
let c : Fin 1 ⊕ Fin 3 → ℝ := fun i =>
|
||
match i with
|
||
| Sum.inl 0 => 1/2 * (Matrix.trace (σ0 * A.1)).re
|
||
| Sum.inr 0 => - 1/2 * (Matrix.trace (σ1 * A.1)).re
|
||
| Sum.inr 1 => - 1/2 * (Matrix.trace (σ2 * A.1)).re
|
||
| Sum.inr 2 => - 1/2 * (Matrix.trace (σ3 * A.1)).re
|
||
use c
|
||
simp only [one_div, Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton, Fin.sum_univ_three, c]
|
||
apply selfAdjoint_ext
|
||
· simp only [σSAL', AddSubgroup.coe_add, selfAdjoint.val_smul, smul_neg, mul_add,
|
||
Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul, σ0_σ0_trace, real_smul, ofReal_mul,
|
||
ofReal_inv, ofReal_ofNat, trace_neg, σ0_σ1_trace, smul_zero, neg_zero, σ0_σ2_trace, add_zero,
|
||
σ0_σ3_trace, mul_re, inv_re, re_ofNat, normSq_ofNat, div_self_mul_self', ofReal_re, inv_im,
|
||
im_ofNat, zero_div, ofReal_im, mul_zero, sub_zero, mul_im, zero_mul]
|
||
ring
|
||
· simp only [σSAL', AddSubgroup.coe_add, selfAdjoint.val_smul, smul_neg, mul_add,
|
||
Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul, σ1_σ0_trace, smul_zero, trace_neg,
|
||
σ1_σ1_trace, real_smul, ofReal_mul, ofReal_div, ofReal_neg, ofReal_one, ofReal_ofNat,
|
||
σ1_σ2_trace, neg_zero, add_zero, σ1_σ3_trace, zero_add, neg_re, mul_re, div_ofNat_re, one_re,
|
||
ofReal_re, div_ofNat_im, neg_im, one_im, zero_div, ofReal_im, mul_zero, sub_zero, re_ofNat,
|
||
mul_im, zero_mul, im_ofNat]
|
||
ring
|
||
· simp only [σSAL', AddSubgroup.coe_add, selfAdjoint.val_smul, smul_neg, mul_add,
|
||
Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul, σ2_σ0_trace, smul_zero, trace_neg,
|
||
σ2_σ1_trace, neg_zero, σ2_σ2_trace, real_smul, ofReal_mul, ofReal_div, ofReal_neg, ofReal_one,
|
||
ofReal_ofNat, zero_add, σ2_σ3_trace, add_zero, neg_re, mul_re, div_ofNat_re, one_re, ofReal_re,
|
||
div_ofNat_im, neg_im, one_im, zero_div, ofReal_im, mul_zero, sub_zero, re_ofNat, mul_im,
|
||
zero_mul, im_ofNat]
|
||
ring
|
||
· simp only [σSAL', AddSubgroup.coe_add, selfAdjoint.val_smul, smul_neg, mul_add,
|
||
Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul, σ3_σ0_trace, smul_zero, trace_neg,
|
||
σ3_σ1_trace, neg_zero, σ3_σ2_trace, add_zero, σ3_σ3_trace, real_smul, ofReal_mul, ofReal_div,
|
||
ofReal_neg, ofReal_one, ofReal_ofNat, zero_add, neg_re, mul_re, div_ofNat_re, one_re, ofReal_re,
|
||
div_ofNat_im, neg_im, one_im, zero_div, ofReal_im, mul_zero, sub_zero, re_ofNat, mul_im,
|
||
zero_mul, im_ofNat]
|
||
ring
|
||
|
||
/-- The basis of `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` formed by Pauli matrices
|
||
where the `1, 2, 3` pauli matrices are negated. These can be thought of as the
|
||
covariant Pauli-matrices. -/
|
||
def σSAL : Basis (Fin 1 ⊕ Fin 3) ℝ (selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :=
|
||
Basis.mk σSAL_linearly_independent σSAL_span
|
||
|
||
/-- The decomposition of a self-adjint matrix into the Pauli matrices (where `σi` are negated). -/
|
||
lemma σSAL_decomp (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
M = (1/2 * (Matrix.trace (σ0 * M.1)).re) • σSAL (Sum.inl 0)
|
||
+ (-1/2 * (Matrix.trace (σ1 * M.1)).re) • σSAL (Sum.inr 0)
|
||
+ (-1/2 * (Matrix.trace (σ2 * M.1)).re) • σSAL (Sum.inr 1)
|
||
+ (-1/2 * (Matrix.trace (σ3 * M.1)).re) • σSAL (Sum.inr 2) := by
|
||
apply selfAdjoint_ext
|
||
· simp only [one_div, σSAL, Fin.isValue, Basis.coe_mk, σSAL', AddSubgroup.coe_add,
|
||
selfAdjoint.val_smul, smul_neg, mul_add, Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul,
|
||
σ0_σ0_trace, real_smul, ofReal_mul, ofReal_inv, ofReal_ofNat, trace_neg, σ0_σ1_trace, smul_zero,
|
||
neg_zero, add_zero, σ0_σ2_trace, σ0_σ3_trace, mul_re, inv_re, re_ofNat, normSq_ofNat,
|
||
div_self_mul_self', ofReal_re, inv_im, im_ofNat, zero_div, ofReal_im, mul_zero, sub_zero,
|
||
mul_im, zero_mul]
|
||
ring
|
||
· simp only [one_div, σSAL, Fin.isValue, Basis.coe_mk, σSAL', AddSubgroup.coe_add,
|
||
selfAdjoint.val_smul, smul_neg, mul_add, Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul,
|
||
σ1_σ0_trace, smul_zero, trace_neg, σ1_σ1_trace, real_smul, ofReal_mul, ofReal_div, ofReal_neg,
|
||
ofReal_one, ofReal_ofNat, zero_add, σ1_σ2_trace, neg_zero, add_zero, σ1_σ3_trace, neg_re,
|
||
mul_re, div_ofNat_re, one_re, ofReal_re, div_ofNat_im, neg_im, one_im, zero_div, ofReal_im,
|
||
mul_zero, sub_zero, re_ofNat, mul_im, zero_mul, im_ofNat]
|
||
ring
|
||
· simp only [one_div, σSAL, Fin.isValue, Basis.coe_mk, σSAL', AddSubgroup.coe_add,
|
||
selfAdjoint.val_smul, smul_neg, mul_add, Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul,
|
||
σ2_σ0_trace, smul_zero, trace_neg, σ2_σ1_trace, neg_zero, add_zero, σ2_σ2_trace, real_smul,
|
||
ofReal_mul, ofReal_div, ofReal_neg, ofReal_one, ofReal_ofNat, zero_add, σ2_σ3_trace, neg_re,
|
||
mul_re, div_ofNat_re, one_re, ofReal_re, div_ofNat_im, neg_im, one_im, zero_div, ofReal_im,
|
||
mul_zero, sub_zero, re_ofNat, mul_im, zero_mul, im_ofNat]
|
||
ring
|
||
· simp only [one_div, σSAL, Fin.isValue, Basis.coe_mk, σSAL', AddSubgroup.coe_add,
|
||
selfAdjoint.val_smul, smul_neg, mul_add, Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul,
|
||
σ3_σ0_trace, smul_zero, trace_neg, σ3_σ1_trace, neg_zero, add_zero, σ3_σ2_trace, σ3_σ3_trace,
|
||
real_smul, ofReal_mul, ofReal_div, ofReal_neg, ofReal_one, ofReal_ofNat, zero_add, neg_re,
|
||
mul_re, div_ofNat_re, one_re, ofReal_re, div_ofNat_im, neg_im, one_im, zero_div, ofReal_im,
|
||
mul_zero, sub_zero, re_ofNat, mul_im, zero_mul, im_ofNat]
|
||
ring
|
||
|
||
/-- The component of a self-adjoint matrix in the direction `σ0` under
|
||
the basis formed by the covaraiant Pauli matrices. -/
|
||
@[simp]
|
||
lemma σSAL_repr_inl_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
σSAL.repr M (Sum.inl 0) = 1 / 2 * Matrix.trace (σ0 * M.1) := by
|
||
have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm
|
||
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton, Fin.sum_univ_three] at hM
|
||
have h0 := congrArg (fun A => Matrix.trace (σ0 * A.1)/ 2) hM
|
||
simp only [σSAL, Basis.mk_repr, Fin.isValue, Basis.coe_mk, σSAL', AddSubgroup.coe_add,
|
||
selfAdjoint.val_smul, smul_neg, mul_add, Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul,
|
||
σ0_σ0_trace, real_smul, trace_neg, σ0_σ1_trace, smul_zero, neg_zero, σ0_σ2_trace, add_zero,
|
||
σ0_σ3_trace, isUnit_iff_ne_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true,
|
||
IsUnit.mul_div_cancel_right] at h0
|
||
linear_combination (norm := ring_nf) -h0
|
||
simp [σSAL]
|
||
|
||
/-- The component of a self-adjoint matrix in the direction `-σ1` under
|
||
the basis formed by the covaraiant Pauli matrices. -/
|
||
@[simp]
|
||
lemma σSAL_repr_inr_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
σSAL.repr M (Sum.inr 0) = - 1 / 2 * Matrix.trace (σ1 * M.1) := by
|
||
have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm
|
||
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton, Fin.sum_univ_three] at hM
|
||
have h0 := congrArg (fun A => - Matrix.trace (σ1 * A.1)/ 2) hM
|
||
simp only [σSAL, Basis.mk_repr, Fin.isValue, Basis.coe_mk, σSAL', AddSubgroup.coe_add,
|
||
selfAdjoint.val_smul, smul_neg, mul_add, Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul,
|
||
σ1_σ0_trace, smul_zero, trace_neg, σ1_σ1_trace, real_smul, σ1_σ2_trace, neg_zero, add_zero,
|
||
σ1_σ3_trace, zero_add, neg_neg, isUnit_iff_ne_zero, ne_eq, OfNat.ofNat_ne_zero,
|
||
not_false_eq_true, IsUnit.mul_div_cancel_right] at h0
|
||
linear_combination (norm := ring_nf) -h0
|
||
simp [σSAL]
|
||
|
||
/-- The component of a self-adjoint matrix in the direction `-σ2` under
|
||
the basis formed by the covaraiant Pauli matrices. -/
|
||
@[simp]
|
||
lemma σSAL_repr_inr_1 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
σSAL.repr M (Sum.inr 1) = - 1 / 2 * Matrix.trace (σ2 * M.1) := by
|
||
have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm
|
||
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton, Fin.sum_univ_three] at hM
|
||
have h0 := congrArg (fun A => - Matrix.trace (σ2 * A.1)/ 2) hM
|
||
simp only [σSAL, Basis.mk_repr, Fin.isValue, Basis.coe_mk, σSAL', AddSubgroup.coe_add,
|
||
selfAdjoint.val_smul, smul_neg, mul_add, Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul,
|
||
σ2_σ0_trace, smul_zero, trace_neg, σ2_σ1_trace, neg_zero, σ2_σ2_trace, real_smul, zero_add,
|
||
σ2_σ3_trace, add_zero, neg_neg, isUnit_iff_ne_zero, ne_eq, OfNat.ofNat_ne_zero,
|
||
not_false_eq_true, IsUnit.mul_div_cancel_right] at h0
|
||
linear_combination (norm := ring_nf) -h0
|
||
simp [σSAL]
|
||
|
||
/-- The component of a self-adjoint matrix in the direction `-σ3` under
|
||
the basis formed by the covaraiant Pauli matrices. -/
|
||
@[simp]
|
||
lemma σSAL_repr_inr_2 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
σSAL.repr M (Sum.inr 2) = - 1 / 2 * Matrix.trace (σ3 * M.1) := by
|
||
have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm
|
||
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton, Fin.sum_univ_three] at hM
|
||
have h0 := congrArg (fun A => - Matrix.trace (σ3 * A.1)/ 2) hM
|
||
simp only [σSAL, Basis.mk_repr, Fin.isValue, Basis.coe_mk, σSAL', AddSubgroup.coe_add,
|
||
selfAdjoint.val_smul, smul_neg, mul_add, Algebra.mul_smul_comm, mul_neg, trace_add, trace_smul,
|
||
σ3_σ0_trace, smul_zero, trace_neg, σ3_σ1_trace, neg_zero, σ3_σ2_trace, add_zero, σ3_σ3_trace,
|
||
real_smul, zero_add, neg_neg, isUnit_iff_ne_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true,
|
||
IsUnit.mul_div_cancel_right] at h0
|
||
linear_combination (norm := ring_nf) -h0
|
||
simp only [σSAL, Basis.mk_repr, Fin.isValue, sub_self]
|
||
|
||
/-- The relationship between the basis `σSA` of contrvariant Pauli-matrices and the basis
|
||
`σSAL` of covariant Pauli matrices is by multiplication by the Minkowski matrix. -/
|
||
lemma σSA_minkowskiMetric_σSAL (i : Fin 1 ⊕ Fin 3) :
|
||
σSA i = minkowskiMatrix i i • σSAL i := by
|
||
match i with
|
||
| Sum.inl 0 =>
|
||
simp [σSA, σSAL, σSA', σSAL', minkowskiMatrix.inl_0_inl_0]
|
||
| Sum.inr 0 =>
|
||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', minkowskiMatrix.inr_i_inr_i, σSAL, σSAL',
|
||
neg_smul, one_smul]
|
||
cases i with
|
||
| inl val =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| inr val_1 =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| Sum.inr 1 =>
|
||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', minkowskiMatrix.inr_i_inr_i, σSAL, σSAL',
|
||
neg_smul, one_smul]
|
||
cases i with
|
||
| inl val =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| inr val_1 =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| Sum.inr 2 =>
|
||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', minkowskiMatrix.inr_i_inr_i, σSAL, σSAL',
|
||
neg_smul, one_smul]
|
||
cases i with
|
||
| inl val =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| inr val_1 =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
|
||
end
|
||
end PauliMatrix
|