361 lines
17 KiB
Text
361 lines
17 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Lorentz.Weyl.Two
|
||
/-!
|
||
|
||
# Units of Weyl fermions
|
||
|
||
We define the units for Weyl fermions, often denoted `δ` in the literature.
|
||
|
||
-/
|
||
|
||
namespace Fermion
|
||
noncomputable section
|
||
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open CategoryTheory.MonoidalCategory
|
||
|
||
/-- The left-alt-left unit `δᵃₐ` as an element of `(leftHanded ⊗ altLeftHanded).V`. -/
|
||
def leftAltLeftUnitVal : (leftHanded ⊗ altLeftHanded).V :=
|
||
leftAltLeftToMatrix.symm 1
|
||
|
||
/-- Expansion of `leftAltLeftUnitVal` into the basis. -/
|
||
lemma leftAltLeftUnitVal_expand_tmul : leftAltLeftUnitVal =
|
||
leftBasis 0 ⊗ₜ[ℂ] altLeftBasis 0 + leftBasis 1 ⊗ₜ[ℂ] altLeftBasis 1 := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, leftAltLeftUnitVal, Fin.isValue]
|
||
erw [leftAltLeftToMatrix_symm_expand_tmul]
|
||
simp only [Fin.sum_univ_two, Fin.isValue, one_apply_eq, one_smul, ne_eq, zero_ne_one,
|
||
not_false_eq_true, one_apply_ne, zero_smul, add_zero, one_ne_zero, zero_add]
|
||
|
||
/-- The left-alt-left unit `δᵃₐ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ leftHanded ⊗ altLeftHanded `,
|
||
manifesting the invariance under the `SL(2,ℂ)` action. -/
|
||
def leftAltLeftUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ leftHanded ⊗ altLeftHanded where
|
||
hom := {
|
||
toFun := fun a =>
|
||
let a' : ℂ := a
|
||
a' • leftAltLeftUnitVal,
|
||
map_add' := fun x y => by
|
||
simp only [add_smul]
|
||
map_smul' := fun m x => by
|
||
simp only [smul_smul]
|
||
rfl}
|
||
comm M := by
|
||
ext x : 2
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||
Function.comp_apply]
|
||
let x' : ℂ := x
|
||
change x' • leftAltLeftUnitVal =
|
||
(TensorProduct.map (leftHanded.ρ M) (altLeftHanded.ρ M)) (x' • leftAltLeftUnitVal)
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||
apply congrArg
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, leftAltLeftUnitVal]
|
||
erw [leftAltLeftToMatrix_ρ_symm]
|
||
apply congrArg
|
||
simp
|
||
|
||
lemma leftAltLeftUnit_apply_one : leftAltLeftUnit.hom (1 : ℂ) = leftAltLeftUnitVal := by
|
||
change leftAltLeftUnit.hom.toFun (1 : ℂ) = leftAltLeftUnitVal
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
leftAltLeftUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||
|
||
/-- The alt-left-left unit `δₐᵃ` as an element of `(altLeftHanded ⊗ leftHanded).V`. -/
|
||
def altLeftLeftUnitVal : (altLeftHanded ⊗ leftHanded).V :=
|
||
altLeftLeftToMatrix.symm 1
|
||
|
||
/-- Expansion of `altLeftLeftUnitVal` into the basis. -/
|
||
lemma altLeftLeftUnitVal_expand_tmul : altLeftLeftUnitVal =
|
||
altLeftBasis 0 ⊗ₜ[ℂ] leftBasis 0 + altLeftBasis 1 ⊗ₜ[ℂ] leftBasis 1 := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, altLeftLeftUnitVal, Fin.isValue]
|
||
erw [altLeftLeftToMatrix_symm_expand_tmul]
|
||
simp only [Fin.sum_univ_two, Fin.isValue, one_apply_eq, one_smul, ne_eq, zero_ne_one,
|
||
not_false_eq_true, one_apply_ne, zero_smul, add_zero, one_ne_zero, zero_add]
|
||
|
||
/-- The alt-left-left unit `δₐᵃ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ leftHanded `,
|
||
manifesting the invariance under the `SL(2,ℂ)` action. -/
|
||
def altLeftLeftUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ leftHanded where
|
||
hom := {
|
||
toFun := fun a =>
|
||
let a' : ℂ := a
|
||
a' • altLeftLeftUnitVal,
|
||
map_add' := fun x y => by
|
||
simp only [add_smul]
|
||
map_smul' := fun m x => by
|
||
simp only [smul_smul]
|
||
rfl}
|
||
comm M := by
|
||
ext x : 2
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||
Function.comp_apply]
|
||
let x' : ℂ := x
|
||
change x' • altLeftLeftUnitVal =
|
||
(TensorProduct.map (altLeftHanded.ρ M) (leftHanded.ρ M)) (x' • altLeftLeftUnitVal)
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||
apply congrArg
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, altLeftLeftUnitVal]
|
||
erw [altLeftLeftToMatrix_ρ_symm]
|
||
apply congrArg
|
||
simp only [mul_one, ← transpose_mul, SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq,
|
||
one_ne_zero, not_false_eq_true, mul_nonsing_inv, transpose_one]
|
||
|
||
/-- Applying the morphism `altLeftLeftUnit` to `1` returns `altLeftLeftUnitVal`. -/
|
||
lemma altLeftLeftUnit_apply_one : altLeftLeftUnit.hom (1 : ℂ) = altLeftLeftUnitVal := by
|
||
change altLeftLeftUnit.hom.toFun (1 : ℂ) = altLeftLeftUnitVal
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
altLeftLeftUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||
|
||
/-- The right-alt-right unit `δ^{dot a}_{dot a}` as an element of
|
||
`(rightHanded ⊗ altRightHanded).V`. -/
|
||
def rightAltRightUnitVal : (rightHanded ⊗ altRightHanded).V :=
|
||
rightAltRightToMatrix.symm 1
|
||
|
||
/-- Expansion of `rightAltRightUnitVal` into the basis. -/
|
||
lemma rightAltRightUnitVal_expand_tmul : rightAltRightUnitVal =
|
||
rightBasis 0 ⊗ₜ[ℂ] altRightBasis 0 + rightBasis 1 ⊗ₜ[ℂ] altRightBasis 1 := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, rightAltRightUnitVal, Fin.isValue]
|
||
erw [rightAltRightToMatrix_symm_expand_tmul]
|
||
simp only [Fin.sum_univ_two, Fin.isValue, one_apply_eq, one_smul, ne_eq, zero_ne_one,
|
||
not_false_eq_true, one_apply_ne, zero_smul, add_zero, one_ne_zero, zero_add]
|
||
|
||
/-- The right-alt-right unit `δ^{dot a}_{dot a}` as a morphism
|
||
`𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ rightHanded ⊗ altRightHanded`, manifesting
|
||
the invariance under the `SL(2,ℂ)` action. -/
|
||
def rightAltRightUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ rightHanded ⊗ altRightHanded where
|
||
hom := {
|
||
toFun := fun a =>
|
||
let a' : ℂ := a
|
||
a' • rightAltRightUnitVal,
|
||
map_add' := fun x y => by
|
||
simp only [add_smul]
|
||
map_smul' := fun m x => by
|
||
simp only [smul_smul]
|
||
rfl}
|
||
comm M := by
|
||
ext x : 2
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||
Function.comp_apply]
|
||
let x' : ℂ := x
|
||
change x' • rightAltRightUnitVal =
|
||
(TensorProduct.map (rightHanded.ρ M) (altRightHanded.ρ M)) (x' • rightAltRightUnitVal)
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||
apply congrArg
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, rightAltRightUnitVal]
|
||
erw [rightAltRightToMatrix_ρ_symm]
|
||
apply congrArg
|
||
simp only [RCLike.star_def, mul_one]
|
||
symm
|
||
refine transpose_eq_one.mp ?h.h.h.a
|
||
simp only [transpose_mul, transpose_transpose]
|
||
change (M.1)⁻¹ᴴ * (M.1)ᴴ = 1
|
||
rw [@conjTranspose_nonsing_inv]
|
||
simp
|
||
|
||
lemma rightAltRightUnit_apply_one : rightAltRightUnit.hom (1 : ℂ) = rightAltRightUnitVal := by
|
||
change rightAltRightUnit.hom.toFun (1 : ℂ) = rightAltRightUnitVal
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
rightAltRightUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||
|
||
/-- The alt-right-right unit `δ_{dot a}^{dot a}` as an element of
|
||
`(rightHanded ⊗ altRightHanded).V`. -/
|
||
def altRightRightUnitVal : (altRightHanded ⊗ rightHanded).V :=
|
||
altRightRightToMatrix.symm 1
|
||
|
||
/-- Expansion of `altRightRightUnitVal` into the basis. -/
|
||
lemma altRightRightUnitVal_expand_tmul : altRightRightUnitVal =
|
||
altRightBasis 0 ⊗ₜ[ℂ] rightBasis 0 + altRightBasis 1 ⊗ₜ[ℂ] rightBasis 1 := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, altRightRightUnitVal, Fin.isValue]
|
||
erw [altRightRightToMatrix_symm_expand_tmul]
|
||
simp only [Fin.sum_univ_two, Fin.isValue, one_apply_eq, one_smul, ne_eq, zero_ne_one,
|
||
not_false_eq_true, one_apply_ne, zero_smul, add_zero, one_ne_zero, zero_add]
|
||
|
||
/-- The alt-right-right unit `δ_{dot a}^{dot a}` as a morphism
|
||
`𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altRightHanded ⊗ rightHanded`, manifesting
|
||
the invariance under the `SL(2,ℂ)` action. -/
|
||
def altRightRightUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altRightHanded ⊗ rightHanded where
|
||
hom := {
|
||
toFun := fun a =>
|
||
let a' : ℂ := a
|
||
a' • altRightRightUnitVal,
|
||
map_add' := fun x y => by
|
||
simp only [add_smul]
|
||
map_smul' := fun m x => by
|
||
simp only [smul_smul]
|
||
rfl}
|
||
comm M := by
|
||
ext x : 2
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||
Function.comp_apply]
|
||
let x' : ℂ := x
|
||
change x' • altRightRightUnitVal =
|
||
(TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M)) (x' • altRightRightUnitVal)
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||
apply congrArg
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, altRightRightUnitVal]
|
||
erw [altRightRightToMatrix_ρ_symm]
|
||
apply congrArg
|
||
simp only [mul_one, RCLike.star_def]
|
||
symm
|
||
change (M.1)⁻¹ᴴ * (M.1)ᴴ = 1
|
||
rw [@conjTranspose_nonsing_inv]
|
||
simp
|
||
|
||
lemma altRightRightUnit_apply_one : altRightRightUnit.hom (1 : ℂ) = altRightRightUnitVal := by
|
||
change altRightRightUnit.hom.toFun (1 : ℂ) = altRightRightUnitVal
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
altRightRightUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||
|
||
/-!
|
||
|
||
## Contraction of the units
|
||
|
||
-/
|
||
|
||
/-- Contraction on the right with `altLeftLeftUnit` does nothing. -/
|
||
lemma contr_altLeftLeftUnit (x : leftHanded) :
|
||
(λ_ leftHanded).hom.hom
|
||
(((leftAltContraction) ▷ leftHanded).hom
|
||
((α_ _ _ leftHanded).inv.hom
|
||
(x ⊗ₜ[ℂ] altLeftLeftUnit.hom (1 : ℂ)))) = x := by
|
||
obtain ⟨c, hc⟩ := (mem_span_range_iff_exists_fun ℂ).mp (Basis.mem_span leftBasis x)
|
||
subst hc
|
||
rw [altLeftLeftUnit_apply_one, altLeftLeftUnitVal_expand_tmul]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.instMonoidalCategory_leftUnitor_hom_hom, Action.instMonoidalCategory_whiskerRight_hom,
|
||
Action.instMonoidalCategory_associator_inv_hom, CategoryTheory.Equivalence.symm_inverse,
|
||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||
Fin.sum_univ_two, Fin.isValue, tmul_add, add_tmul, smul_tmul, tmul_smul, map_add,
|
||
_root_.map_smul]
|
||
have h1 (x y : leftHanded) (z : altLeftHanded) : (leftAltContraction.hom ▷ leftHanded.V)
|
||
((α_ leftHanded.V altLeftHanded.V leftHanded.V).inv (x ⊗ₜ[ℂ] z ⊗ₜ[ℂ] y)) =
|
||
(leftAltContraction.hom (x ⊗ₜ[ℂ] z)) ⊗ₜ[ℂ] y := rfl
|
||
erw [h1, h1, h1, h1]
|
||
repeat rw [leftAltContraction_basis]
|
||
simp only [Fin.isValue, leftUnitor, ModuleCat.MonoidalCategory.leftUnitor, ModuleCat.of_coe,
|
||
CategoryTheory.Iso.trans_hom, LinearEquiv.toModuleIso_hom, ModuleCat.ofSelfIso_hom,
|
||
CategoryTheory.Category.comp_id, Action.instMonoidalCategory_tensorUnit_V, Fin.val_zero,
|
||
↓reduceIte, Fin.val_one, one_ne_zero, zero_tmul, map_zero, smul_zero, add_zero, zero_ne_one,
|
||
zero_add]
|
||
erw [TensorProduct.lid_tmul, TensorProduct.lid_tmul]
|
||
simp only [Fin.isValue, one_smul]
|
||
|
||
/-- Contraction on the right with `leftAltLeftUnit` does nothing. -/
|
||
lemma contr_leftAltLeftUnit (x : altLeftHanded) :
|
||
(λ_ altLeftHanded).hom.hom
|
||
(((altLeftContraction) ▷ altLeftHanded).hom
|
||
((α_ _ _ altLeftHanded).inv.hom
|
||
(x ⊗ₜ[ℂ] leftAltLeftUnit.hom (1 : ℂ)))) = x := by
|
||
obtain ⟨c, hc⟩ := (mem_span_range_iff_exists_fun ℂ).mp (Basis.mem_span altLeftBasis x)
|
||
subst hc
|
||
rw [leftAltLeftUnit_apply_one, leftAltLeftUnitVal_expand_tmul]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.instMonoidalCategory_leftUnitor_hom_hom, Action.instMonoidalCategory_whiskerRight_hom,
|
||
Action.instMonoidalCategory_associator_inv_hom, CategoryTheory.Equivalence.symm_inverse,
|
||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||
Fin.sum_univ_two, Fin.isValue, tmul_add, add_tmul, smul_tmul, tmul_smul, map_add,
|
||
_root_.map_smul]
|
||
have h1 (x y : altLeftHanded) (z : leftHanded) : (altLeftContraction.hom ▷ altLeftHanded.V)
|
||
((α_ altLeftHanded.V leftHanded.V altLeftHanded.V).inv (x ⊗ₜ[ℂ] z ⊗ₜ[ℂ] y)) =
|
||
(altLeftContraction.hom (x ⊗ₜ[ℂ] z)) ⊗ₜ[ℂ] y := rfl
|
||
erw [h1, h1, h1, h1]
|
||
repeat rw [altLeftContraction_basis]
|
||
simp only [Fin.isValue, Action.instMonoidalCategory_tensorUnit_V, Fin.val_zero, ↓reduceIte,
|
||
Fin.val_one, one_ne_zero, zero_tmul, map_zero, smul_zero, add_zero, zero_ne_one, zero_add]
|
||
erw [TensorProduct.lid_tmul, TensorProduct.lid_tmul]
|
||
simp only [Fin.isValue, one_smul]
|
||
|
||
/-- Contraction on the right with `altRightRightUnit` does nothing. -/
|
||
lemma contr_altRightRightUnit (x : rightHanded) :
|
||
(λ_ rightHanded).hom.hom
|
||
(((rightAltContraction) ▷ rightHanded).hom
|
||
((α_ _ _ rightHanded).inv.hom
|
||
(x ⊗ₜ[ℂ] altRightRightUnit.hom (1 : ℂ)))) = x := by
|
||
obtain ⟨c, hc⟩ := (mem_span_range_iff_exists_fun ℂ).mp (Basis.mem_span rightBasis x)
|
||
subst hc
|
||
rw [altRightRightUnit_apply_one, altRightRightUnitVal_expand_tmul]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.instMonoidalCategory_leftUnitor_hom_hom, Action.instMonoidalCategory_whiskerRight_hom,
|
||
Action.instMonoidalCategory_associator_inv_hom, CategoryTheory.Equivalence.symm_inverse,
|
||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||
Fin.sum_univ_two, Fin.isValue, tmul_add, add_tmul, smul_tmul, tmul_smul, map_add,
|
||
_root_.map_smul]
|
||
have h1 (x y : rightHanded) (z : altRightHanded) : (rightAltContraction.hom ▷ rightHanded.V)
|
||
((α_ rightHanded.V altRightHanded.V rightHanded.V).inv (x ⊗ₜ[ℂ] z ⊗ₜ[ℂ] y)) =
|
||
(rightAltContraction.hom (x ⊗ₜ[ℂ] z)) ⊗ₜ[ℂ] y := rfl
|
||
erw [h1, h1, h1, h1]
|
||
repeat rw [rightAltContraction_basis]
|
||
simp only [Fin.isValue, Action.instMonoidalCategory_tensorUnit_V, Fin.val_zero, ↓reduceIte,
|
||
Fin.val_one, one_ne_zero, zero_tmul, map_zero, smul_zero, add_zero, zero_ne_one, zero_add]
|
||
erw [TensorProduct.lid_tmul, TensorProduct.lid_tmul]
|
||
simp only [Fin.isValue, one_smul]
|
||
|
||
/-- Contraction on the right with `rightAltRightUnit` does nothing. -/
|
||
lemma contr_rightAltRightUnit (x : altRightHanded) :
|
||
(λ_ altRightHanded).hom.hom
|
||
(((altRightContraction) ▷ altRightHanded).hom
|
||
((α_ _ _ altRightHanded).inv.hom
|
||
(x ⊗ₜ[ℂ] rightAltRightUnit.hom (1 : ℂ)))) = x := by
|
||
obtain ⟨c, hc⟩ := (mem_span_range_iff_exists_fun ℂ).mp (Basis.mem_span altRightBasis x)
|
||
subst hc
|
||
rw [rightAltRightUnit_apply_one, rightAltRightUnitVal_expand_tmul]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.instMonoidalCategory_leftUnitor_hom_hom, Action.instMonoidalCategory_whiskerRight_hom,
|
||
Action.instMonoidalCategory_associator_inv_hom, CategoryTheory.Equivalence.symm_inverse,
|
||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||
Fin.sum_univ_two, Fin.isValue, tmul_add, add_tmul, smul_tmul, tmul_smul, map_add,
|
||
_root_.map_smul]
|
||
have h1 (x y : altRightHanded) (z : rightHanded) : (altRightContraction.hom ▷ altRightHanded.V)
|
||
((α_ altRightHanded.V rightHanded.V altRightHanded.V).inv (x ⊗ₜ[ℂ] z ⊗ₜ[ℂ] y)) =
|
||
(altRightContraction.hom (x ⊗ₜ[ℂ] z)) ⊗ₜ[ℂ] y := rfl
|
||
erw [h1, h1, h1, h1]
|
||
repeat rw [altRightContraction_basis]
|
||
simp only [Fin.isValue, Action.instMonoidalCategory_tensorUnit_V, Fin.val_zero, ↓reduceIte,
|
||
Fin.val_one, one_ne_zero, zero_tmul, map_zero, smul_zero, add_zero, zero_ne_one, zero_add]
|
||
erw [TensorProduct.lid_tmul, TensorProduct.lid_tmul]
|
||
simp only [Fin.isValue, one_smul]
|
||
|
||
/-!
|
||
|
||
## Symmetry properties of the units
|
||
|
||
-/
|
||
open CategoryTheory
|
||
|
||
lemma altLeftLeftUnit_symm :
|
||
(altLeftLeftUnit.hom (1 : ℂ)) = (altLeftHanded ◁ 𝟙 _).hom
|
||
((β_ leftHanded altLeftHanded).hom.hom (leftAltLeftUnit.hom (1 : ℂ))) := by
|
||
rw [altLeftLeftUnit_apply_one, altLeftLeftUnitVal_expand_tmul]
|
||
rw [leftAltLeftUnit_apply_one, leftAltLeftUnitVal_expand_tmul]
|
||
rfl
|
||
|
||
lemma leftAltLeftUnit_symm :
|
||
(leftAltLeftUnit.hom (1 : ℂ)) = (leftHanded ◁ 𝟙 _).hom ((β_ altLeftHanded leftHanded).hom.hom
|
||
(altLeftLeftUnit.hom (1 : ℂ))) := by
|
||
rw [altLeftLeftUnit_apply_one, altLeftLeftUnitVal_expand_tmul]
|
||
rw [leftAltLeftUnit_apply_one, leftAltLeftUnitVal_expand_tmul]
|
||
rfl
|
||
|
||
lemma altRightRightUnit_symm :
|
||
(altRightRightUnit.hom (1 : ℂ)) = (altRightHanded ◁ 𝟙 _).hom
|
||
((β_ rightHanded altRightHanded).hom.hom (rightAltRightUnit.hom (1 : ℂ))) := by
|
||
rw [altRightRightUnit_apply_one, altRightRightUnitVal_expand_tmul]
|
||
rw [rightAltRightUnit_apply_one, rightAltRightUnitVal_expand_tmul]
|
||
rfl
|
||
|
||
lemma rightAltRightUnit_symm :
|
||
(rightAltRightUnit.hom (1 : ℂ)) = (rightHanded ◁ 𝟙 _).hom
|
||
((β_ altRightHanded rightHanded).hom.hom (altRightRightUnit.hom (1 : ℂ))) := by
|
||
rw [altRightRightUnit_apply_one, altRightRightUnitVal_expand_tmul]
|
||
rw [rightAltRightUnit_apply_one, rightAltRightUnitVal_expand_tmul]
|
||
rfl
|
||
|
||
end
|
||
end Fermion
|