90 lines
2.7 KiB
Text
90 lines
2.7 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.Wick.Signs.KoszulSign
|
||
/-!
|
||
|
||
# Static wick coefficent
|
||
|
||
-/
|
||
|
||
namespace Wick
|
||
|
||
open HepLean.List
|
||
|
||
open FieldStatistic
|
||
|
||
variable {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le :𝓕 → 𝓕 → Prop) [DecidableRel le]
|
||
|
||
/-- The sign that appears in the static version of Wicks theorem.
|
||
This is actually equal to `superCommuteCoef q [r.get n] (r.take n)`, something
|
||
which will be proved in a lemma. -/
|
||
def staticWickCoef (r : List 𝓕) (i : 𝓕) (n : Fin r.length) : ℂ :=
|
||
koszulSign q le r *
|
||
superCommuteCoef q [i] (List.take (↑((HepLean.List.insertionSortEquiv le r) n))
|
||
(List.insertionSort le r)) *
|
||
koszulSign q le (r.eraseIdx ↑n)
|
||
|
||
lemma staticWickCoef_eq_q (r : List 𝓕) (i : 𝓕) (n : Fin r.length)
|
||
(hq : q i = q (r.get n)) :
|
||
staticWickCoef q le r i n =
|
||
koszulSign q le r *
|
||
superCommuteCoef q [r.get n] (List.take (↑(insertionSortEquiv le r n))
|
||
(List.insertionSort le r)) *
|
||
koszulSign q le (r.eraseIdx ↑n) := by
|
||
simp [staticWickCoef, superCommuteCoef, ofList, hq]
|
||
|
||
lemma insertIdx_eraseIdx {I : Type} : (n : ℕ) → (r : List I) → (hn : n < r.length) →
|
||
List.insertIdx n (r.get ⟨n, hn⟩) (r.eraseIdx n) = r
|
||
| n, [], hn => by
|
||
simp at hn
|
||
| 0, r0 :: r, hn => by
|
||
simp
|
||
| n + 1, r0 :: r, hn => by
|
||
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ,
|
||
List.eraseIdx_cons_succ, List.insertIdx_succ_cons, List.cons.injEq, true_and]
|
||
exact insertIdx_eraseIdx n r _
|
||
|
||
lemma staticWickCoef_eq_get [IsTotal 𝓕 le] [IsTrans 𝓕 le] (r : List 𝓕) (i : 𝓕) (n : Fin r.length)
|
||
(heq : q i = q (r.get n)) :
|
||
staticWickCoef q le r i n = superCommuteCoef q [r.get n] (r.take n) := by
|
||
rw [staticWickCoef_eq_q]
|
||
let r' := r.eraseIdx ↑n
|
||
have hr : List.insertIdx n (r.get n) (r.eraseIdx n) = r := by
|
||
exact insertIdx_eraseIdx n.1 r n.prop
|
||
conv_lhs =>
|
||
lhs
|
||
lhs
|
||
rw [← hr]
|
||
rw [koszulSign_insertIdx q le (r.get n) ((r.eraseIdx ↑n)) n (by
|
||
rw [List.length_eraseIdx]
|
||
simp only [Fin.is_lt, ↓reduceIte]
|
||
omega)]
|
||
rhs
|
||
rhs
|
||
rw [hr]
|
||
conv_lhs =>
|
||
lhs
|
||
lhs
|
||
rhs
|
||
enter [2, 1, 1]
|
||
rw [insertionSortEquiv_congr _ _ hr]
|
||
simp only [List.get_eq_getElem, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||
Fin.cast_mk, Fin.eta, Fin.coe_cast]
|
||
conv_lhs =>
|
||
lhs
|
||
rw [mul_assoc]
|
||
rhs
|
||
rw [insertSign]
|
||
rw [superCommuteCoef_mul_self]
|
||
simp only [mul_one]
|
||
rw [mul_assoc]
|
||
rw [koszulSign_mul_self]
|
||
simp only [mul_one]
|
||
rw [insertSign_eraseIdx]
|
||
rfl
|
||
exact heq
|
||
|
||
end Wick
|