183 lines
5.6 KiB
Text
183 lines
5.6 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.Basic
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
|
||
import Mathlib.Geometry.Manifold.Instances.Real
|
||
import HepLean.Meta.Informal.Basic
|
||
/-!
|
||
|
||
# The Higgs field
|
||
|
||
This file defines the basic properties for the Higgs field in the standard model.
|
||
|
||
## References
|
||
|
||
- We use conventions given in: [Review of Particle Physics, PDG][ParticleDataGroup:2018ovx]
|
||
|
||
-/
|
||
|
||
namespace StandardModel
|
||
noncomputable section
|
||
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
open SpaceTime
|
||
|
||
/-!
|
||
|
||
## The definition of the Higgs vector space.
|
||
|
||
In other words, the target space of the Higgs field.
|
||
-/
|
||
|
||
/-- The complex vector space in which the Higgs field takes values. -/
|
||
abbrev HiggsVec := EuclideanSpace ℂ (Fin 2)
|
||
|
||
namespace HiggsVec
|
||
|
||
/-- The continuous linear map from the vector space `HiggsVec` to `(Fin 2 → ℂ)` achieved by
|
||
casting vectors. -/
|
||
def toFin2ℂ : HiggsVec →L[ℝ] (Fin 2 → ℂ) where
|
||
toFun x := x
|
||
map_add' x y := rfl
|
||
map_smul' a x := rfl
|
||
|
||
/-- The map `toFin2ℂ` is smooth. -/
|
||
lemma smooth_toFin2ℂ : ContMDiff 𝓘(ℝ, HiggsVec) 𝓘(ℝ, Fin 2 → ℂ) ⊤ toFin2ℂ :=
|
||
ContinuousLinearMap.contMDiff toFin2ℂ
|
||
|
||
/-- An orthonormal basis of `HiggsVec`. -/
|
||
def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||
|
||
/-- Generating a Higgs vector from a real number, such that the norm-squared of that Higgs vector
|
||
is the given real number. -/
|
||
def ofReal (a : ℝ) : HiggsVec :=
|
||
![Real.sqrt a, 0]
|
||
|
||
@[simp]
|
||
lemma ofReal_normSq {a : ℝ} (ha : 0 ≤ a) : ‖ofReal a‖ ^ 2 = a := by
|
||
simp only [ofReal]
|
||
rw [PiLp.norm_sq_eq_of_L2]
|
||
rw [@Fin.sum_univ_two]
|
||
simp only [Fin.isValue, cons_val_zero, norm_real, Real.norm_eq_abs, _root_.sq_abs, cons_val_one,
|
||
head_cons, norm_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, add_zero]
|
||
exact Real.sq_sqrt ha
|
||
|
||
end HiggsVec
|
||
|
||
/-!
|
||
|
||
## Definition of the Higgs Field
|
||
|
||
We also define the Higgs bundle.
|
||
-/
|
||
|
||
/-! TODO: Make `HiggsBundle` an associated bundle. -/
|
||
/-- The trivial vector bundle 𝓡² × ℂ². -/
|
||
abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec
|
||
|
||
/-- The instance of a smooth vector bundle with total space `HiggsBundle` and fiber `HiggsVec`. -/
|
||
instance : SmoothVectorBundle HiggsVec HiggsBundle SpaceTime.asSmoothManifold :=
|
||
Bundle.Trivial.smoothVectorBundle HiggsVec
|
||
|
||
/-- A Higgs field is a smooth section of the Higgs bundle. -/
|
||
abbrev HiggsField : Type := ContMDiffSection SpaceTime.asSmoothManifold HiggsVec ⊤ HiggsBundle
|
||
|
||
/-- Given a vector in `HiggsVec` the constant Higgs field with value equal to that
|
||
section. -/
|
||
def HiggsVec.toField (φ : HiggsVec) : HiggsField where
|
||
toFun := fun _ ↦ φ
|
||
contMDiff_toFun := by
|
||
intro x
|
||
rw [Bundle.contMDiffAt_section]
|
||
exact contMDiffAt_const
|
||
|
||
/-- For all spacetime points, the constant Higgs field defined by a Higgs vector,
|
||
returns that Higgs Vector. -/
|
||
@[simp]
|
||
lemma HiggsVec.toField_apply (φ : HiggsVec) (x : SpaceTime) : (φ.toField x) = φ := rfl
|
||
|
||
namespace HiggsField
|
||
open HiggsVec
|
||
|
||
/-!
|
||
|
||
## Relation to `HiggsVec`
|
||
|
||
-/
|
||
|
||
/-- Given a `HiggsField`, the corresponding map from `SpaceTime` to `HiggsVec`. -/
|
||
def toHiggsVec (φ : HiggsField) : SpaceTime → HiggsVec := φ
|
||
|
||
lemma toHiggsVec_smooth (φ : HiggsField) :
|
||
ContMDiff 𝓘(ℝ, SpaceTime) 𝓘(ℝ, HiggsVec) ⊤ φ.toHiggsVec := by
|
||
intro x0
|
||
have h1 := φ.contMDiff x0
|
||
rw [Bundle.contMDiffAt_section] at h1
|
||
exact h1
|
||
|
||
lemma toField_toHiggsVec_apply (φ : HiggsField) (x : SpaceTime) :
|
||
(φ.toHiggsVec x).toField x = φ x := rfl
|
||
|
||
lemma toFin2ℂ_comp_toHiggsVec (φ : HiggsField) :
|
||
toFin2ℂ ∘ φ.toHiggsVec = φ := rfl
|
||
|
||
/-!
|
||
|
||
## Smoothness properties of components
|
||
|
||
-/
|
||
|
||
lemma toVec_smooth (φ : HiggsField) : ContMDiff 𝓘(ℝ, SpaceTime) 𝓘(ℝ, Fin 2 → ℂ) ⊤ φ :=
|
||
smooth_toFin2ℂ.comp φ.toHiggsVec_smooth
|
||
|
||
lemma apply_smooth (φ : HiggsField) :
|
||
∀ i, ContMDiff 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℂ) ⊤ (fun (x : SpaceTime) => (φ x i)) :=
|
||
(contMDiff_pi_space).mp (φ.toVec_smooth)
|
||
|
||
lemma apply_re_smooth (φ : HiggsField) (i : Fin 2) :
|
||
ContMDiff 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) ⊤ (reCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
|
||
(ContinuousLinearMap.contMDiff reCLM).comp (φ.apply_smooth i)
|
||
|
||
lemma apply_im_smooth (φ : HiggsField) (i : Fin 2) :
|
||
ContMDiff 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) ⊤ (imCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
|
||
(ContinuousLinearMap.contMDiff imCLM).comp (φ.apply_smooth i)
|
||
|
||
/-!
|
||
|
||
## Constant Higgs fields
|
||
|
||
-/
|
||
|
||
/-- A Higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
|
||
def IsConst (Φ : HiggsField) : Prop := ∀ x y, Φ x = Φ y
|
||
|
||
lemma isConst_of_higgsVec (φ : HiggsVec) : φ.toField.IsConst := fun _ => congrFun rfl
|
||
|
||
lemma isConst_iff_of_higgsVec (Φ : HiggsField) : Φ.IsConst ↔ ∃ (φ : HiggsVec), Φ = φ.toField :=
|
||
Iff.intro (fun h ↦ ⟨Φ 0, by ext x y; rw [← h x 0]; rfl⟩) (fun ⟨φ, hφ⟩ x y ↦ by subst hφ; rfl)
|
||
|
||
/-- Generating a constant Higgs field from a real number, such that the norm-squared of that Higgs
|
||
vector is the given real number. -/
|
||
def ofReal (a : ℝ) : HiggsField := (HiggsVec.ofReal a).toField
|
||
|
||
/-- The higgs field which is all zero. -/
|
||
def zero : HiggsField := ofReal 0
|
||
|
||
informal_lemma zero_is_zero_section where
|
||
physics :≈ "The zero Higgs field is the zero section of the Higgs bundle."
|
||
math :≈ "The HiggsField `zero` defined by `ofReal 0`
|
||
is the constant zero-section of the bundle `HiggsBundle`."
|
||
deps :≈ [`StandardModel.HiggsField.zero]
|
||
|
||
end HiggsField
|
||
|
||
end
|
||
end StandardModel
|