44 lines
1 KiB
Text
44 lines
1 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.AnomalyCancellation.PureU1.Sort
|
||
import Mathlib.Logic.Equiv.Fin
|
||
/-!
|
||
# Vector like charges
|
||
|
||
For the `n`-even case we define the property of a charge assignment being vector like.
|
||
|
||
## TODO
|
||
|
||
The `n`-odd case.
|
||
|
||
-/
|
||
universe v u
|
||
|
||
open Nat
|
||
open Finset
|
||
open BigOperators
|
||
|
||
namespace PureU1
|
||
|
||
variable {n : ℕ}
|
||
|
||
/--
|
||
Given a natural number `n`, this lemma proves that `n + n` is equal to `2 * n`.
|
||
-/
|
||
lemma split_equal (n : ℕ) : n + n = 2 * n := (Nat.two_mul n).symm
|
||
|
||
|
||
lemma split_odd (n : ℕ) : n + 1 + n = 2 * n + 1 := by omega
|
||
|
||
/-- A charge configuration for n even is vector like if when sorted the `i`th element
|
||
is equal to the negative of the `n + i`th element. -/
|
||
@[simp]
|
||
def VectorLikeEven (S : (PureU1 (2 * n)).Charges) : Prop :=
|
||
∀ (i : Fin n), (sort S) (Fin.cast (split_equal n) (Fin.castAdd n i))
|
||
= - (sort S) (Fin.cast (split_equal n) (Fin.natAdd n i))
|
||
|
||
|
||
end PureU1
|