PhysLean/HepLean/AnomalyCancellation/SMNu/PlusU1/Basic.lean
2024-06-26 11:54:02 -04:00

142 lines
3.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.Basic
import HepLean.AnomalyCancellation.SMNu.Permutations
import HepLean.AnomalyCancellation.GroupActions
/-!
# ACC system for SM with RHN
We define the ACC system for the Standard Model with right-handed neutrinos.
-/
universe v u
namespace SMRHN
open SMνCharges
open SMνACCs
open BigOperators
/-- The ACC system for the SM plus RHN with an additional U1. -/
@[simps!]
def PlusU1 (n : ) : ACCSystem where
numberLinear := 4
linearACCs := fun i =>
match i with
| 0 => @accGrav n
| 1 => accSU2
| 2 => accSU3
| 3 => accYY
numberQuadratic := 1
quadraticACCs := fun i =>
match i with
| 0 => accQuad
cubicACC := accCube
namespace PlusU1
variable {n : }
lemma gravSol (S : (PlusU1 n).LinSols) : accGrav S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 0
lemma SU2Sol (S : (PlusU1 n).LinSols) : accSU2 S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 1
lemma SU3Sol (S : (PlusU1 n).LinSols) : accSU3 S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 2
lemma YYsol (S : (PlusU1 n).LinSols) : accYY S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 3
lemma quadSol (S : (PlusU1 n).QuadSols) : accQuad S.val = 0 := by
have hS := S.quadSol
simp at hS
exact hS 0
lemma cubeSol (S : (PlusU1 n).Sols) : accCube S.val = 0 := by
exact S.cubicSol
/-- An element of `charges` which satisfies the linear ACCs
gives us a element of `LinSols`. -/
def chargeToLinear (S : (PlusU1 n).Charges) (hGrav : accGrav S = 0)
(hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) (hYY : accYY S = 0) :
(PlusU1 n).LinSols :=
⟨S, by
intro i
simp at i
match i with
| 0 => exact hGrav
| 1 => exact hSU2
| 2 => exact hSU3
| 3 => exact hYY⟩
/-- An element of `LinSols` which satisfies the quadratic ACCs
gives us a element of `AnomalyFreeQuad`. -/
def linearToQuad (S : (PlusU1 n).LinSols) (hQ : accQuad S.val = 0) :
(PlusU1 n).QuadSols :=
⟨S, by
intro i
simp at i
match i with
| 0 => exact hQ⟩
/-- An element of `QuadSols` which satisfies the quadratic ACCs
gives us a element of `Sols`. -/
def quadToAF (S : (PlusU1 n).QuadSols) (hc : accCube S.val = 0) :
(PlusU1 n).Sols := ⟨S, hc⟩
/-- An element of `charges` which satisfies the linear and quadratic ACCs
gives us a element of `QuadSols`. -/
def chargeToQuad (S : (PlusU1 n).Charges) (hGrav : accGrav S = 0)
(hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) (hYY : accYY S = 0) (hQ : accQuad S = 0) :
(PlusU1 n).QuadSols :=
linearToQuad (chargeToLinear S hGrav hSU2 hSU3 hYY) hQ
/-- An element of `charges` which satisfies the linear, quadratic and cubic ACCs
gives us a element of `Sols`. -/
def chargeToAF (S : (PlusU1 n).Charges) (hGrav : accGrav S = 0) (hSU2 : accSU2 S = 0)
(hSU3 : accSU3 S = 0) (hYY : accYY S = 0) (hQ : accQuad S = 0) (hc : accCube S = 0) :
(PlusU1 n).Sols :=
quadToAF (chargeToQuad S hGrav hSU2 hSU3 hYY hQ) hc
/-- An element of `LinSols` which satisfies the quadratic and cubic ACCs
gives us a element of `Sols`. -/
def linearToAF (S : (PlusU1 n).LinSols) (hQ : accQuad S.val = 0)
(hc : accCube S.val = 0) : (PlusU1 n).Sols :=
quadToAF (linearToQuad S hQ) hc
/-- The permutations acting on the ACC system corresponding to the SM with RHN. -/
def perm (n : ) : ACCSystemGroupAction (PlusU1 n) where
group := PermGroup n
groupInst := inferInstance
rep := repCharges
linearInvariant := by
intro i
simp at i
match i with
| 0 => exact accGrav_invariant
| 1 => exact accSU2_invariant
| 2 => exact accSU3_invariant
| 3 => exact accYY_invariant
quadInvariant := by
intro i
simp at i
match i with
| 0 => exact accQuad_invariant
cubicInvariant := accCube_invariant
end PlusU1
end SMRHN