PhysLean/HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean
2024-06-26 11:54:02 -04:00

72 lines
2.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
import HepLean.AnomalyCancellation.SMNu.PlusU1.PlaneNonSols
/-!
# Bound on plane dimension
We place an upper bound on the dimension of a plane of charges on which every point is a solution.
The upper bound is 7, proven in the theorem `plane_exists_dim_le_7`.
-/
universe v u
namespace SMRHN
namespace PlusU1
open SMνCharges
open SMνACCs
open BigOperators
/-- A proposition which is true if for a given `n` a plane of charges of dimension `n` exists
in which each point is a solution. -/
def ExistsPlane (n : ) : Prop := ∃ (B : Fin n → (PlusU1 3).Charges),
LinearIndependent B ∧ ∀ (f : Fin n → ), (PlusU1 3).IsSolution (∑ i, f i • B i)
lemma exists_plane_exists_basis {n : } (hE : ExistsPlane n) :
∃ (B : Fin 11 ⊕ Fin n → (PlusU1 3).Charges), LinearIndependent B := by
obtain ⟨E, hE1, hE2⟩ := hE
obtain ⟨B, hB1, hB2⟩ := eleven_dim_plane_of_no_sols_exists
let Y := Sum.elim B E
use Y
apply Fintype.linearIndependent_iff.mpr
intro g hg
rw [@Fintype.sum_sum_type] at hg
rw [@add_eq_zero_iff_eq_neg] at hg
rw [← @Finset.sum_neg_distrib] at hg
have h1 : ∑ x : Fin n, -(g (Sum.inr x) • Y (Sum.inr x)) =
∑ x : Fin n, (-g (Sum.inr x)) • Y (Sum.inr x):= by
apply Finset.sum_congr
simp only
intro i _
simp
rw [h1] at hg
have h2 : ∑ a₁ : Fin 11, g (Sum.inl a₁) • Y (Sum.inl a₁) = 0 := by
apply hB2
erw [hg]
exact hE2 fun i => -g (Sum.inr i)
rw [Fintype.linearIndependent_iff] at hB1 hE1
have h3 : ∀ i, g (Sum.inl i) = 0 := hB1 (fun i => (g (Sum.inl i))) h2
rw [h2] at hg
have h4 : ∀ i, - g (Sum.inr i) = 0 := hE1 (fun i => (- g (Sum.inr i))) hg.symm
simp at h4
intro i
match i with
| Sum.inl i => exact h3 i
| Sum.inr i => exact h4 i
theorem plane_exists_dim_le_7 {n : } (hn : ExistsPlane n) : n ≤ 7 := by
obtain ⟨B, hB⟩ := exists_plane_exists_basis hn
have h1 := LinearIndependent.fintype_card_le_finrank hB
simp at h1
rw [show FiniteDimensional.finrank (PlusU1 3).Charges = 18 from
FiniteDimensional.finrank_fin_fun ] at h1
exact Nat.le_of_add_le_add_left h1
end PlusU1
end SMRHN