178 lines
6.3 KiB
Text
178 lines
6.3 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzGroup.Proper
|
||
import Mathlib.Topology.Constructions
|
||
import HepLean.SpaceTime.FourVelocity
|
||
/-!
|
||
# Boosts
|
||
|
||
This file defines those Lorentz which are boosts.
|
||
|
||
We first define generalised boosts, which are restricted lorentz transformations taking
|
||
a four velocity `u` to a four velocity `v`.
|
||
|
||
A boost is the special case of a generalised boost when `u = stdBasis 0`.
|
||
|
||
## TODO
|
||
|
||
- Show that generalised boosts are in the restricted Lorentz group.
|
||
- Define boosts.
|
||
|
||
## References
|
||
|
||
- The main argument follows: Guillem Cobos, The Lorentz Group, 2015:
|
||
https://diposit.ub.edu/dspace/bitstream/2445/68763/2/memoria.pdf
|
||
|
||
-/
|
||
noncomputable section
|
||
namespace SpaceTime
|
||
|
||
namespace LorentzGroup
|
||
|
||
open FourVelocity
|
||
|
||
/-- An auxillary linear map used in the definition of a generalised boost. -/
|
||
def genBoostAux₁ (u v : FourVelocity) : SpaceTime →ₗ[ℝ] SpaceTime where
|
||
toFun x := (2 * ηLin x u) • v.1.1
|
||
map_add' x y := by
|
||
simp only [map_add, LinearMap.add_apply]
|
||
rw [mul_add, add_smul]
|
||
map_smul' c x := by
|
||
simp only [LinearMapClass.map_smul, LinearMap.smul_apply, smul_eq_mul,
|
||
RingHom.id_apply]
|
||
rw [← mul_assoc, mul_comm 2 c, mul_assoc, mul_smul]
|
||
|
||
/-- An auxillary linear map used in the definition of a genearlised boost. -/
|
||
def genBoostAux₂ (u v : FourVelocity) : SpaceTime →ₗ[ℝ] SpaceTime where
|
||
toFun x := - (ηLin x (u + v) / (1 + ηLin u v)) • (u + v)
|
||
map_add' x y := by
|
||
simp only
|
||
rw [ηLin.map_add, div_eq_mul_one_div]
|
||
rw [show (ηLin x + ηLin y) (↑u + ↑v) = ηLin x (u+v) + ηLin y (u+v) from rfl]
|
||
rw [add_mul, neg_add, add_smul, ← div_eq_mul_one_div, ← div_eq_mul_one_div]
|
||
map_smul' c x := by
|
||
simp only
|
||
rw [ηLin.map_smul]
|
||
rw [show (c • ηLin x) (↑u + ↑v) = c * ηLin x (u+v) from rfl]
|
||
rw [mul_div_assoc, neg_mul_eq_mul_neg, smul_smul]
|
||
rfl
|
||
|
||
/-- An generalised boost. This is a Lorentz transformation which takes the four velocity `u`
|
||
to `v`. -/
|
||
def genBoost (u v : FourVelocity) : SpaceTime →ₗ[ℝ] SpaceTime :=
|
||
LinearMap.id + genBoostAux₁ u v + genBoostAux₂ u v
|
||
|
||
namespace genBoost
|
||
|
||
/--
|
||
This lemma states that for a given four-velocity `u`, the general boost
|
||
transformation `genBoost u u` is equal to the identity linear map `LinearMap.id`.
|
||
-/
|
||
lemma self (u : FourVelocity) : genBoost u u = LinearMap.id := by
|
||
ext x
|
||
simp [genBoost]
|
||
rw [add_assoc]
|
||
rw [@add_right_eq_self]
|
||
rw [@add_eq_zero_iff_eq_neg]
|
||
rw [genBoostAux₁, genBoostAux₂]
|
||
simp only [LinearMap.coe_mk, AddHom.coe_mk, map_add, smul_add, neg_smul, neg_add_rev, neg_neg]
|
||
rw [← add_smul]
|
||
apply congr
|
||
apply congrArg
|
||
repeat rw [u.1.2]
|
||
field_simp
|
||
ring
|
||
rfl
|
||
|
||
/-- A generalised boost as a matrix. -/
|
||
def toMatrix (u v : FourVelocity) : Matrix (Fin 4) (Fin 4) ℝ :=
|
||
LinearMap.toMatrix stdBasis stdBasis (genBoost u v)
|
||
|
||
lemma toMatrix_mulVec (u v : FourVelocity) (x : SpaceTime) :
|
||
(toMatrix u v).mulVec x = genBoost u v x :=
|
||
LinearMap.toMatrix_mulVec_repr stdBasis stdBasis (genBoost u v) x
|
||
|
||
lemma toMatrix_apply (u v : FourVelocity) (i j : Fin 4) :
|
||
(toMatrix u v) i j =
|
||
η i i * (ηLin (stdBasis i) (stdBasis j) + 2 * ηLin (stdBasis j) u * ηLin (stdBasis i) v -
|
||
ηLin (stdBasis i) (u + v) * ηLin (stdBasis j) (u + v) / (1 + ηLin u v)) := by
|
||
rw [ηLin_matrix_stdBasis' j i (toMatrix u v), toMatrix_mulVec]
|
||
simp only [genBoost, genBoostAux₁, genBoostAux₂, map_add, smul_add, neg_smul, LinearMap.add_apply,
|
||
LinearMap.id_apply, LinearMap.coe_mk, AddHom.coe_mk, LinearMapClass.map_smul, smul_eq_mul,
|
||
map_neg, mul_eq_mul_left_iff]
|
||
apply Or.inl
|
||
ring
|
||
|
||
lemma toMatrix_continuous (u : FourVelocity) : Continuous (toMatrix u) := by
|
||
refine continuous_matrix ?_
|
||
intro i j
|
||
simp only [toMatrix_apply]
|
||
refine Continuous.comp' (continuous_mul_left (η i i)) ?hf
|
||
refine Continuous.sub ?_ ?_
|
||
refine Continuous.comp' (continuous_add_left ((ηLin (stdBasis i)) (stdBasis j))) ?_
|
||
refine Continuous.comp' (continuous_mul_left (2 * (ηLin (stdBasis j)) ↑u)) ?_
|
||
exact η_continuous _
|
||
refine Continuous.mul ?_ ?_
|
||
refine Continuous.mul ?_ ?_
|
||
simp only [(ηLin _).map_add]
|
||
refine Continuous.comp' ?_ ?_
|
||
exact continuous_add_left ((ηLin (stdBasis i)) ↑u)
|
||
exact η_continuous _
|
||
simp only [(ηLin _).map_add]
|
||
refine Continuous.comp' ?_ ?_
|
||
exact continuous_add_left _
|
||
exact η_continuous _
|
||
refine Continuous.inv₀ ?_ ?_
|
||
refine Continuous.comp' (continuous_add_left 1) ?_
|
||
exact η_continuous _
|
||
exact fun x => one_plus_ne_zero u x
|
||
|
||
|
||
lemma toMatrix_PreservesηLin (u v : FourVelocity) : PreservesηLin (toMatrix u v) := by
|
||
intro x y
|
||
rw [toMatrix_mulVec, toMatrix_mulVec, genBoost, genBoostAux₁, genBoostAux₂]
|
||
have h1 : (1 + (ηLin ↑u) ↑v) ≠ 0 := one_plus_ne_zero u v
|
||
simp only [map_add, smul_add, neg_smul, LinearMap.add_apply, LinearMap.id_coe,
|
||
id_eq, LinearMap.coe_mk, AddHom.coe_mk, LinearMapClass.map_smul, map_neg, LinearMap.smul_apply,
|
||
smul_eq_mul, LinearMap.neg_apply]
|
||
field_simp
|
||
rw [u.1.2, v.1.2, ηLin_symm v u, ηLin_symm u y, ηLin_symm v y]
|
||
ring
|
||
|
||
/-- A generalised boost as an element of the Lorentz Group. -/
|
||
def toLorentz (u v : FourVelocity) : LorentzGroup :=
|
||
⟨toMatrix u v, toMatrix_PreservesηLin u v⟩
|
||
|
||
lemma toLorentz_continuous (u : FourVelocity) : Continuous (toLorentz u) := by
|
||
refine Continuous.subtype_mk ?_ (fun x => toMatrix_PreservesηLin u x)
|
||
exact toMatrix_continuous u
|
||
|
||
|
||
|
||
lemma toLorentz_joined_to_1 (u v : FourVelocity) : Joined 1 (toLorentz u v) := by
|
||
obtain ⟨f, _⟩ := isPathConnected_FourVelocity.joinedIn u trivial v trivial
|
||
use ContinuousMap.comp ⟨toLorentz u, toLorentz_continuous u⟩ f
|
||
· simp only [ContinuousMap.toFun_eq_coe, ContinuousMap.comp_apply, ContinuousMap.coe_coe,
|
||
Path.source, ContinuousMap.coe_mk]
|
||
rw [@Subtype.ext_iff, toLorentz]
|
||
simp [PreservesηLin.liftGL, toMatrix, self u]
|
||
· simp
|
||
|
||
lemma toLorentz_in_connected_component_1 (u v : FourVelocity) :
|
||
toLorentz u v ∈ connectedComponent 1 :=
|
||
pathComponent_subset_component _ (toLorentz_joined_to_1 u v)
|
||
|
||
lemma isProper (u v : FourVelocity) : IsProper (toLorentz u v) :=
|
||
(isProper_on_connected_component (toLorentz_in_connected_component_1 u v)).mp id_IsProper
|
||
|
||
end genBoost
|
||
|
||
|
||
end LorentzGroup
|
||
|
||
|
||
end SpaceTime
|
||
end
|