193 lines
7.9 KiB
Text
193 lines
7.9 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.FourVelocity
|
||
import HepLean.SpaceTime.LorentzGroup.Proper
|
||
/-!
|
||
# The Orthochronous Lorentz Group
|
||
|
||
We define the give a series of lemmas related to the orthochronous property of lorentz
|
||
matrices.
|
||
|
||
## TODO
|
||
|
||
- Prove topological properties.
|
||
|
||
-/
|
||
|
||
|
||
noncomputable section
|
||
|
||
namespace SpaceTime
|
||
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
|
||
namespace LorentzGroup
|
||
open PreFourVelocity
|
||
|
||
/-- The first column of a lorentz matrix as a `PreFourVelocity`. -/
|
||
@[simp]
|
||
def fstCol (Λ : LorentzGroup) : PreFourVelocity := ⟨Λ.1 *ᵥ stdBasis 0, by
|
||
rw [mem_PreFourVelocity_iff, ηLin_expand]
|
||
simp only [Fin.isValue, stdBasis_mulVec]
|
||
have h00 := congrFun (congrFun ((PreservesηLin.iff_matrix Λ.1).mp Λ.2) 0) 0
|
||
simp only [Fin.isValue, mul_apply, transpose_apply, Fin.sum_univ_four, ne_eq, zero_ne_one,
|
||
not_false_eq_true, η_off_diagonal, zero_mul, add_zero, Fin.reduceEq, one_ne_zero, mul_zero,
|
||
zero_add, one_apply_eq] at h00
|
||
simp only [η_explicit, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val',
|
||
cons_val_fin_one, vecCons_const, one_mul, mul_one, cons_val_one, head_cons, mul_neg, neg_mul,
|
||
cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, cons_val_three,
|
||
head_fin_const] at h00
|
||
exact h00⟩
|
||
|
||
/-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/
|
||
def IsOrthochronous (Λ : LorentzGroup) : Prop := 0 ≤ Λ.1 0 0
|
||
|
||
lemma IsOrthochronous_iff_transpose (Λ : LorentzGroup) :
|
||
IsOrthochronous Λ ↔ IsOrthochronous (transpose Λ) := by rfl
|
||
|
||
lemma IsOrthochronous_iff_fstCol_IsFourVelocity (Λ : LorentzGroup) :
|
||
IsOrthochronous Λ ↔ IsFourVelocity (fstCol Λ) := by
|
||
simp [IsOrthochronous, IsFourVelocity]
|
||
rw [stdBasis_mulVec]
|
||
|
||
/-- The continuous map taking a Lorentz transformation to its `0 0` element. -/
|
||
def mapZeroZeroComp : C(LorentzGroup, ℝ) := ⟨fun Λ => Λ.1 0 0,
|
||
Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) 0 0⟩
|
||
|
||
/-- An auxillary function used in the definition of `orthchroMapReal`. -/
|
||
def stepFunction : ℝ → ℝ := fun t =>
|
||
if t ≤ -1 then -1 else
|
||
if 1 ≤ t then 1 else t
|
||
|
||
lemma stepFunction_continuous : Continuous stepFunction := by
|
||
apply Continuous.if ?_ continuous_const (Continuous.if ?_ continuous_const continuous_id)
|
||
<;> intro a ha
|
||
rw [@Set.Iic_def, @frontier_Iic, @Set.mem_singleton_iff] at ha
|
||
rw [ha]
|
||
simp [neg_lt_self_iff, zero_lt_one, ↓reduceIte]
|
||
have h1 : ¬ (1 : ℝ) ≤ 0 := by simp
|
||
exact Eq.symm (if_neg h1)
|
||
rw [Set.Ici_def, @frontier_Ici, @Set.mem_singleton_iff] at ha
|
||
exact id (Eq.symm ha)
|
||
|
||
/-- The continuous map from `lorentzGroup` to `ℝ` wh
|
||
taking Orthochronous elements to `1` and non-orthochronous to `-1`. -/
|
||
def orthchroMapReal : C(LorentzGroup, ℝ) := ContinuousMap.comp
|
||
⟨stepFunction, stepFunction_continuous⟩ mapZeroZeroComp
|
||
|
||
lemma orthchroMapReal_on_IsOrthochronous {Λ : LorentzGroup} (h : IsOrthochronous Λ) :
|
||
orthchroMapReal Λ = 1 := by
|
||
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h
|
||
simp only [IsFourVelocity] at h
|
||
rw [zero_nonneg_iff] at h
|
||
simp [stdBasis_mulVec] at h
|
||
have h1 : ¬ Λ.1 0 0 ≤ (-1 : ℝ) := by linarith
|
||
change stepFunction (Λ.1 0 0) = 1
|
||
rw [stepFunction, if_neg h1, if_pos h]
|
||
|
||
|
||
lemma orthchroMapReal_on_not_IsOrthochronous {Λ : LorentzGroup} (h : ¬ IsOrthochronous Λ) :
|
||
orthchroMapReal Λ = - 1 := by
|
||
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h
|
||
rw [not_IsFourVelocity_iff, zero_nonpos_iff] at h
|
||
simp only [fstCol, Fin.isValue, stdBasis_mulVec] at h
|
||
change stepFunction (Λ.1 0 0) = - 1
|
||
rw [stepFunction, if_pos h]
|
||
|
||
lemma orthchroMapReal_minus_one_or_one (Λ : LorentzGroup) :
|
||
orthchroMapReal Λ = -1 ∨ orthchroMapReal Λ = 1 := by
|
||
by_cases h : IsOrthochronous Λ
|
||
apply Or.inr $ orthchroMapReal_on_IsOrthochronous h
|
||
apply Or.inl $ orthchroMapReal_on_not_IsOrthochronous h
|
||
|
||
local notation "ℤ₂" => Multiplicative (ZMod 2)
|
||
|
||
/-- A continuous map from `lorentzGroup` to `ℤ₂` whose kernal are the Orthochronous elements. -/
|
||
def orthchroMap : C(LorentzGroup, ℤ₂) :=
|
||
ContinuousMap.comp coeForℤ₂ {
|
||
toFun := fun Λ => ⟨orthchroMapReal Λ, orthchroMapReal_minus_one_or_one Λ⟩,
|
||
continuous_toFun := Continuous.subtype_mk (ContinuousMap.continuous orthchroMapReal) _}
|
||
|
||
lemma orthchroMap_IsOrthochronous {Λ : LorentzGroup} (h : IsOrthochronous Λ) :
|
||
orthchroMap Λ = 1 := by
|
||
simp [orthchroMap, orthchroMapReal_on_IsOrthochronous h]
|
||
|
||
lemma orthchroMap_not_IsOrthochronous {Λ : LorentzGroup} (h : ¬ IsOrthochronous Λ) :
|
||
orthchroMap Λ = Additive.toMul (1 : ZMod 2) := by
|
||
simp [orthchroMap, orthchroMapReal_on_not_IsOrthochronous h]
|
||
rfl
|
||
|
||
lemma zero_zero_mul (Λ Λ' : LorentzGroup) :
|
||
(Λ * Λ').1 0 0 = (fstCol (transpose Λ)).1 0 * (fstCol Λ').1 0 +
|
||
⟪(fstCol (transpose Λ)).1.space, (fstCol Λ').1.space⟫_ℝ := by
|
||
simp only [Fin.isValue, lorentzGroupIsGroup_mul_coe, mul_apply, Fin.sum_univ_four, fstCol,
|
||
transpose, stdBasis_mulVec, transpose_apply, space, PiLp.inner_apply, Nat.succ_eq_add_one,
|
||
Nat.reduceAdd, RCLike.inner_apply, conj_trivial, Fin.sum_univ_three, cons_val_zero,
|
||
cons_val_one, head_cons, cons_val_two, tail_cons]
|
||
ring
|
||
|
||
lemma mul_othchron_of_othchron_othchron {Λ Λ' : LorentzGroup} (h : IsOrthochronous Λ)
|
||
(h' : IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by
|
||
rw [IsOrthochronous_iff_transpose] at h
|
||
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h'
|
||
rw [IsOrthochronous, zero_zero_mul]
|
||
exact euclid_norm_IsFourVelocity_IsFourVelocity h h'
|
||
|
||
lemma mul_othchron_of_not_othchron_not_othchron {Λ Λ' : LorentzGroup} (h : ¬ IsOrthochronous Λ)
|
||
(h' : ¬ IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by
|
||
rw [IsOrthochronous_iff_transpose] at h
|
||
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h'
|
||
rw [IsOrthochronous, zero_zero_mul]
|
||
exact euclid_norm_not_IsFourVelocity_not_IsFourVelocity h h'
|
||
|
||
lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup} (h : IsOrthochronous Λ)
|
||
(h' : ¬ IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by
|
||
rw [IsOrthochronous_iff_transpose] at h
|
||
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h'
|
||
rw [IsOrthochronous_iff_fstCol_IsFourVelocity, not_IsFourVelocity_iff]
|
||
simp [stdBasis_mulVec]
|
||
change (Λ * Λ').1 0 0 ≤ _
|
||
rw [zero_zero_mul]
|
||
exact euclid_norm_IsFourVelocity_not_IsFourVelocity h h'
|
||
|
||
lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : LorentzGroup} (h : ¬ IsOrthochronous Λ)
|
||
(h' : IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by
|
||
rw [IsOrthochronous_iff_transpose] at h
|
||
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h'
|
||
rw [IsOrthochronous_iff_fstCol_IsFourVelocity, not_IsFourVelocity_iff]
|
||
simp [stdBasis_mulVec]
|
||
change (Λ * Λ').1 0 0 ≤ _
|
||
rw [zero_zero_mul]
|
||
exact euclid_norm_not_IsFourVelocity_IsFourVelocity h h'
|
||
|
||
/-- The homomorphism from `lorentzGroup` to `ℤ₂` whose kernel are the Orthochronous elements. -/
|
||
def orthchroRep : LorentzGroup →* ℤ₂ where
|
||
toFun := orthchroMap
|
||
map_one' := orthchroMap_IsOrthochronous (by simp [IsOrthochronous])
|
||
map_mul' Λ Λ' := by
|
||
simp only
|
||
by_cases h : IsOrthochronous Λ
|
||
<;> by_cases h' : IsOrthochronous Λ'
|
||
rw [orthchroMap_IsOrthochronous h, orthchroMap_IsOrthochronous h',
|
||
orthchroMap_IsOrthochronous (mul_othchron_of_othchron_othchron h h')]
|
||
rfl
|
||
rw [orthchroMap_IsOrthochronous h, orthchroMap_not_IsOrthochronous h',
|
||
orthchroMap_not_IsOrthochronous (mul_not_othchron_of_othchron_not_othchron h h')]
|
||
rfl
|
||
rw [orthchroMap_not_IsOrthochronous h, orthchroMap_IsOrthochronous h',
|
||
orthchroMap_not_IsOrthochronous (mul_not_othchron_of_not_othchron_othchron h h')]
|
||
rfl
|
||
rw [orthchroMap_not_IsOrthochronous h, orthchroMap_not_IsOrthochronous h',
|
||
orthchroMap_IsOrthochronous (mul_othchron_of_not_othchron_not_othchron h h')]
|
||
rfl
|
||
|
||
end LorentzGroup
|
||
|
||
end SpaceTime
|
||
end
|