PhysLean/HepLean/StandardModel/HiggsBoson/Basic.lean
2024-07-09 19:22:16 -04:00

247 lines
8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Basic
import HepLean.StandardModel.Basic
import HepLean.StandardModel.HiggsBoson.TargetSpace
import Mathlib.Data.Complex.Exponential
import Mathlib.Tactic.Polyrith
import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.RepresentationTheory.Basic
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Adjoint
import Mathlib.Geometry.Manifold.ContMDiff.Product
import Mathlib.Algebra.QuadraticDiscriminant
/-!
# The Higgs field
This file defines the basic properties for the higgs field in the standard model.
## References
- We use conventions given in: [Review of Particle Physics, PDG][ParticleDataGroup:2018ovx]
-/
universe v u
namespace StandardModel
noncomputable section
open Manifold
open Matrix
open Complex
open ComplexConjugate
open SpaceTime
/-!
## Definition of the Higgs bundle
-/
/-! TODO: Make `HiggsBundle` an associated bundle. -/
/-- The trivial vector bundle 𝓡² × ℂ². -/
abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec
instance : SmoothVectorBundle HiggsVec HiggsBundle SpaceTime.asSmoothManifold :=
Bundle.Trivial.smoothVectorBundle HiggsVec 𝓘(, SpaceTime)
/-- A higgs field is a smooth section of the higgs bundle. -/
abbrev HiggsField : Type := SmoothSection SpaceTime.asSmoothManifold HiggsVec HiggsBundle
instance : NormedAddCommGroup (Fin 2 → ) := by
exact Pi.normedAddCommGroup
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
section. -/
noncomputable def HiggsVec.toField (φ : HiggsVec) : HiggsField where
toFun := fun _ ↦ φ
contMDiff_toFun := by
intro x
rw [Bundle.contMDiffAt_section]
exact smoothAt_const
namespace HiggsField
open Complex Real
/-!
## Relation to `HiggsVec`
-/
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
def toHiggsVec (φ : HiggsField) : SpaceTime → HiggsVec := φ
lemma toHiggsVec_smooth (φ : HiggsField) : Smooth 𝓘(, SpaceTime) 𝓘(, HiggsVec) φ.toHiggsVec := by
intro x0
have h1 := φ.contMDiff x0
rw [Bundle.contMDiffAt_section] at h1
have h2 :
(fun x => ((trivializationAt HiggsVec (Bundle.Trivial SpaceTime HiggsVec) x0)
{ proj := x, snd := φ x }).2) = φ := by
rfl
simp only [h2] at h1
exact h1
lemma toField_toHiggsVec_apply (φ : HiggsField) (x : SpaceTime) :
(φ.toHiggsVec x).toField x = φ x := rfl
lemma higgsVecToFin2_toHiggsVec (φ : HiggsField) :
higgsVecToFin2 ∘ φ.toHiggsVec = φ := rfl
/-!
## The inner product and norm of Higgs fields
-/
/-- Given two `HiggsField`, the map `spaceTime → ` obtained by taking their inner product. -/
def innerProd (φ1 φ2 : HiggsField) : SpaceTime → := fun x => ⟪φ1 x, φ2 x⟫_
/-- Notation for the inner product of two Higgs fields. -/
scoped[StandardModel.HiggsField] notation "⟪" φ1 "," φ2 "⟫_H" => innerProd φ1 φ2
@[simp]
lemma innerProd_left_zero (φ : HiggsField) : ⟪0, φ⟫_H = 0 := by
funext x
simp [innerProd]
@[simp]
lemma innerProd_right_zero (φ : HiggsField) : ⟪φ, 0⟫_H = 0 := by
funext x
simp [innerProd]
lemma innerProd_expand (φ1 φ2 : HiggsField) :
⟪φ1, φ2⟫_H = fun x => (conj (φ1 x 0) * (φ2 x 0) + conj (φ1 x 1) * (φ2 x 1) ) := by
funext x
simp only [innerProd, PiLp.inner_apply, RCLike.inner_apply, Fin.sum_univ_two]
/-- Given a `higgsField`, the map `spaceTime → ` obtained by taking the square norm of the
higgs vector. -/
@[simp]
def normSq (φ : HiggsField) : SpaceTime → := fun x => ( ‖φ x‖ ^ 2)
/-- Notation for the norm squared of a Higgs field. -/
scoped[StandardModel.HiggsField] notation "‖" φ1 "‖_H ^ 2" => normSq φ1
lemma innerProd_self_eq_normSq (φ : HiggsField) (x : SpaceTime) :
⟪φ, φ⟫_H x = ‖φ‖_H ^ 2 x := by
erw [normSq, @PiLp.norm_sq_eq_of_L2, Fin.sum_univ_two]
simp only [ ofReal_add, ofReal_pow, innerProd, PiLp.inner_apply,
RCLike.inner_apply, Fin.sum_univ_two, conj_mul']
lemma normSq_eq_innerProd_self (φ : HiggsField) (x : SpaceTime) :
‖φ x‖ ^ 2 = (⟪φ, φ⟫_H x).re := by
rw [innerProd_self_eq_normSq]
rfl
lemma toHiggsVec_norm (φ : HiggsField) (x : SpaceTime) :
‖φ x‖ = ‖φ.toHiggsVec x‖ := rfl
lemma normSq_expand (φ : HiggsField) :
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
funext x
simp [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add, @norm_sq_eq_inner ]
lemma normSq_nonneg (φ : HiggsField) (x : SpaceTime) : 0 ≤ φ.normSq x := by
simp [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
lemma normSq_zero (φ : HiggsField) (x : SpaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
simp [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
/-!
## The Higgs potential
-/
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
@[simp]
def potential (φ : HiggsField) (μSq lambda : ) (x : SpaceTime) : :=
- μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x
lemma potential_apply (φ : HiggsField) (μSq lambda : ) (x : SpaceTime) :
(φ.potential μSq lambda) x = HiggsVec.potential μSq lambda (φ.toHiggsVec x) := by
simp [HiggsVec.potential, toHiggsVec_norm]
ring
/-!
## Smoothness
-/
lemma toVec_smooth (φ : HiggsField) : Smooth 𝓘(, SpaceTime) 𝓘(, Fin 2 → ) φ :=
smooth_higgsVecToFin2.comp φ.toHiggsVec_smooth
lemma apply_smooth (φ : HiggsField) :
∀ i, Smooth 𝓘(, SpaceTime) 𝓘(, ) (fun (x : SpaceTime) => (φ x i)) :=
(smooth_pi_space).mp (φ.toVec_smooth)
lemma apply_re_smooth (φ : HiggsField) (i : Fin 2):
Smooth 𝓘(, SpaceTime) 𝓘(, ) (reCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
(ContinuousLinearMap.smooth reCLM).comp (φ.apply_smooth i)
lemma apply_im_smooth (φ : HiggsField) (i : Fin 2):
Smooth 𝓘(, SpaceTime) 𝓘(, ) (imCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
(ContinuousLinearMap.smooth imCLM).comp (φ.apply_smooth i)
lemma normSq_smooth (φ : HiggsField) : Smooth 𝓘(, SpaceTime) 𝓘(, ) φ.normSq := by
rw [normSq_expand]
refine Smooth.add ?_ ?_
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
refine Smooth.add ?_ ?_
refine Smooth.smul ?_ ?_
exact φ.apply_re_smooth 0
exact φ.apply_re_smooth 0
refine Smooth.smul ?_ ?_
exact φ.apply_im_smooth 0
exact φ.apply_im_smooth 0
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
refine Smooth.add ?_ ?_
refine Smooth.smul ?_ ?_
exact φ.apply_re_smooth 1
exact φ.apply_re_smooth 1
refine Smooth.smul ?_ ?_
exact φ.apply_im_smooth 1
exact φ.apply_im_smooth 1
lemma potential_smooth (φ : HiggsField) (μSq lambda : ) :
Smooth 𝓘(, SpaceTime) 𝓘(, ) (fun x => φ.potential μSq lambda x) := by
simp only [potential, normSq, neg_mul]
exact (smooth_const.smul φ.normSq_smooth).neg.add
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
/-!
## Constant higgs fields
-/
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
def IsConst (Φ : HiggsField) : Prop := ∀ x y, Φ x = Φ y
lemma isConst_of_higgsVec (φ : HiggsVec) : φ.toField.IsConst := by
intro x _
simp [HiggsVec.toField]
lemma isConst_iff_of_higgsVec (Φ : HiggsField) : Φ.IsConst ↔ ∃ (φ : HiggsVec), Φ = φ.toField :=
Iff.intro (fun h ↦ ⟨Φ 0, by ext x y; rw [← h x 0]; rfl⟩) (fun ⟨φ, hφ⟩ x y ↦ by subst hφ; rfl)
lemma normSq_of_higgsVec (φ : HiggsVec) : φ.toField.normSq = fun x => (norm φ) ^ 2 := by
funext x
simp [normSq, HiggsVec.toField]
lemma potential_of_higgsVec (φ : HiggsVec) (μSq lambda : ) :
φ.toField.potential μSq lambda = fun _ => HiggsVec.potential μSq lambda φ := by
simp [HiggsVec.potential]
unfold potential
rw [normSq_of_higgsVec]
ring_nf
end HiggsField
end
end StandardModel