78 lines
3.5 KiB
Text
78 lines
3.5 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.FieldStruct.Basic
|
||
import HepLean.PerturbationTheory.CreateAnnihilate
|
||
/-!
|
||
|
||
# Creation and annihlation parts of fields
|
||
|
||
-/
|
||
|
||
namespace FieldStruct
|
||
variable (𝓕 : FieldStruct)
|
||
|
||
/-- To each state the specificaition of the type of creation and annihlation parts.
|
||
For asymptotic staes there is only one allowed part, whilst for position states
|
||
there is two. -/
|
||
def statesToCreateAnnihilateType : 𝓕.States → Type
|
||
| States.negAsymp _ => Unit
|
||
| States.position _ => CreateAnnihilate
|
||
| States.posAsymp _ => Unit
|
||
|
||
/-- The instance of a finite type on `𝓕.statesToCreateAnnihilateType i`. -/
|
||
instance : ∀ i, Fintype (𝓕.statesToCreateAnnihilateType i) := fun i =>
|
||
match i with
|
||
| States.negAsymp _ => inferInstanceAs (Fintype Unit)
|
||
| States.position _ => inferInstanceAs (Fintype CreateAnnihilate)
|
||
| States.posAsymp _ => inferInstanceAs (Fintype Unit)
|
||
|
||
/-- The instance of a decidable equality on `𝓕.statesToCreateAnnihilateType i`. -/
|
||
instance : ∀ i, DecidableEq (𝓕.statesToCreateAnnihilateType i) := fun i =>
|
||
match i with
|
||
| States.negAsymp _ => inferInstanceAs (DecidableEq Unit)
|
||
| States.position _ => inferInstanceAs (DecidableEq CreateAnnihilate)
|
||
| States.posAsymp _ => inferInstanceAs (DecidableEq Unit)
|
||
|
||
/-- The equivalence between `𝓕.statesToCreateAnnihilateType i` and
|
||
`𝓕.statesToCreateAnnihilateType j` from an equality `i = j`. -/
|
||
def statesToCreateAnnihilateTypeCongr : {i j : 𝓕.States} → i = j →
|
||
𝓕.statesToCreateAnnihilateType i ≃ 𝓕.statesToCreateAnnihilateType j
|
||
| _, _, rfl => Equiv.refl _
|
||
|
||
/-- A creation and annihlation state is a state plus an valid specification of the
|
||
creation or annihliation part of that state. (For asympotic states there is only one valid
|
||
choice). -/
|
||
def CreateAnnihilateStates : Type := Σ (s : 𝓕.States), 𝓕.statesToCreateAnnihilateType s
|
||
|
||
/-- The map from creation and annihlation states to their underlying states. -/
|
||
def createAnnihilateStatesToStates : 𝓕.CreateAnnihilateStates → 𝓕.States := Sigma.fst
|
||
|
||
@[simp]
|
||
lemma createAnnihilateStatesToStates_prod (s : 𝓕.States) (t : 𝓕.statesToCreateAnnihilateType s) :
|
||
𝓕.createAnnihilateStatesToStates ⟨s, t⟩ = s := rfl
|
||
|
||
/-- The map from creation and annihlation states to the type `CreateAnnihilate`
|
||
specifying if a state is a creation or an annihilation state. -/
|
||
def createAnnihlateStatesToCreateAnnihilate : 𝓕.CreateAnnihilateStates → CreateAnnihilate
|
||
| ⟨States.negAsymp _, _⟩ => CreateAnnihilate.create
|
||
| ⟨States.position _, CreateAnnihilate.create⟩ => CreateAnnihilate.create
|
||
| ⟨States.position _, CreateAnnihilate.annihilate⟩ => CreateAnnihilate.annihilate
|
||
| ⟨States.posAsymp _, _⟩ => CreateAnnihilate.annihilate
|
||
|
||
/-- The normal ordering on creation and annihlation states. -/
|
||
def normalOrder : 𝓕.CreateAnnihilateStates → 𝓕.CreateAnnihilateStates → Prop :=
|
||
fun a b => CreateAnnihilate.normalOrder (𝓕.createAnnihlateStatesToCreateAnnihilate a)
|
||
(𝓕.createAnnihlateStatesToCreateAnnihilate b)
|
||
|
||
/-- Normal ordering is total. -/
|
||
instance : IsTotal 𝓕.CreateAnnihilateStates 𝓕.normalOrder where
|
||
total _ _ := total_of CreateAnnihilate.normalOrder _ _
|
||
|
||
/-- Normal ordering is transitive. -/
|
||
instance : IsTrans 𝓕.CreateAnnihilateStates 𝓕.normalOrder where
|
||
trans _ _ _ := fun h h' => IsTrans.trans (α := CreateAnnihilate) _ _ _ h h'
|
||
|
||
end FieldStruct
|