140 lines
4.3 KiB
Text
140 lines
4.3 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.AnomalyCancellation.MSSMNu.Basic
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.RepresentationTheory.Basic
|
||
/-!
|
||
# Permutations of MSSM charges and solutions
|
||
|
||
The three family MSSM charges has a family permutation of S₃⁶. This file defines this group
|
||
and its action on the MSSM.
|
||
|
||
-/
|
||
|
||
universe v u
|
||
|
||
open Nat
|
||
open Finset
|
||
|
||
namespace MSSM
|
||
|
||
open MSSMCharges
|
||
open MSSMACCs
|
||
open BigOperators
|
||
|
||
/-- The group of family permutations is `S₃⁶`-/
|
||
@[simp]
|
||
def permGroup := Fin 6 → Equiv.Perm (Fin 3)
|
||
|
||
@[simp]
|
||
instance : Group permGroup := Pi.group
|
||
|
||
/-- The image of an element of `permGroup` under the representation on charges. -/
|
||
@[simps!]
|
||
def chargeMap (f : permGroup) : MSSMCharges.charges →ₗ[ℚ] MSSMCharges.charges where
|
||
toFun S := toSpecies.symm (fun i => toSMSpecies i S ∘ f i, Prod.snd (toSpecies S))
|
||
map_add' S T := by
|
||
simp only
|
||
rw [charges_eq_toSpecies_eq]
|
||
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
|
||
intro i
|
||
rw [(toSMSpecies i).map_add]
|
||
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
|
||
rfl
|
||
map_smul' a S := by
|
||
simp only
|
||
rw [charges_eq_toSpecies_eq]
|
||
apply And.intro ?_ $ Prod.mk.inj_iff.mp rfl
|
||
intro i
|
||
rw [(toSMSpecies i).map_smul, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
|
||
rfl
|
||
|
||
lemma chargeMap_toSpecies (f : permGroup) (S : MSSMCharges.charges) (j : Fin 6) :
|
||
toSMSpecies j (chargeMap f S) = toSMSpecies j S ∘ f j := by
|
||
erw [toSMSpecies_toSpecies_inv]
|
||
|
||
/-- The representation of `permGroup` acting on the vector space of charges. -/
|
||
@[simp]
|
||
def repCharges : Representation ℚ (permGroup) (MSSMCharges).charges where
|
||
toFun f := chargeMap f⁻¹
|
||
map_mul' f g :=by
|
||
simp only [permGroup, mul_inv_rev]
|
||
apply LinearMap.ext
|
||
intro S
|
||
rw [charges_eq_toSpecies_eq]
|
||
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
|
||
intro i
|
||
simp only [ Pi.mul_apply, Pi.inv_apply, Equiv.Perm.coe_mul, LinearMap.mul_apply]
|
||
rw [chargeMap_toSpecies, chargeMap_toSpecies]
|
||
simp only [Pi.mul_apply, Pi.inv_apply]
|
||
rw [chargeMap_toSpecies]
|
||
rfl
|
||
map_one' := by
|
||
apply LinearMap.ext
|
||
intro S
|
||
rw [charges_eq_toSpecies_eq]
|
||
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
|
||
intro i
|
||
erw [toSMSpecies_toSpecies_inv]
|
||
rfl
|
||
|
||
lemma repCharges_toSMSpecies (f : permGroup) (S : MSSMCharges.charges) (j : Fin 6) :
|
||
toSMSpecies j (repCharges f S) = toSMSpecies j S ∘ f⁻¹ j := by
|
||
erw [toSMSpecies_toSpecies_inv]
|
||
|
||
lemma toSpecies_sum_invariant (m : ℕ) (f : permGroup) (S : MSSMCharges.charges) (j : Fin 6) :
|
||
∑ i, ((fun a => a ^ m) ∘ toSMSpecies j (repCharges f S)) i =
|
||
∑ i, ((fun a => a ^ m) ∘ toSMSpecies j S) i := by
|
||
rw [repCharges_toSMSpecies]
|
||
exact Equiv.sum_comp (f⁻¹ j) ((fun a => a ^ m) ∘ (toSMSpecies j) S)
|
||
|
||
lemma Hd_invariant (f : permGroup) (S : MSSMCharges.charges) :
|
||
Hd (repCharges f S) = Hd S := rfl
|
||
|
||
lemma Hu_invariant (f : permGroup) (S : MSSMCharges.charges) :
|
||
Hu (repCharges f S) = Hu S := rfl
|
||
|
||
lemma accGrav_invariant (f : permGroup) (S : MSSMCharges.charges) :
|
||
accGrav (repCharges f S) = accGrav S :=
|
||
accGrav_ext
|
||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||
(Hd_invariant f S)
|
||
(Hu_invariant f S)
|
||
|
||
lemma accSU2_invariant (f : permGroup) (S : MSSMCharges.charges) :
|
||
accSU2 (repCharges f S) = accSU2 S :=
|
||
accSU2_ext
|
||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||
(Hd_invariant f S)
|
||
(Hu_invariant f S)
|
||
|
||
lemma accSU3_invariant (f : permGroup) (S : MSSMCharges.charges) :
|
||
accSU3 (repCharges f S) = accSU3 S :=
|
||
accSU3_ext
|
||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||
|
||
lemma accYY_invariant (f : permGroup) (S : MSSMCharges.charges) :
|
||
accYY (repCharges f S) = accYY S :=
|
||
accYY_ext
|
||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||
(Hd_invariant f S)
|
||
(Hu_invariant f S)
|
||
|
||
lemma accQuad_invariant (f : permGroup) (S : MSSMCharges.charges) :
|
||
accQuad (repCharges f S) = accQuad S :=
|
||
accQuad_ext
|
||
(toSpecies_sum_invariant 2 f S)
|
||
(Hd_invariant f S)
|
||
(Hu_invariant f S)
|
||
|
||
lemma accCube_invariant (f : permGroup) (S : MSSMCharges.charges) :
|
||
accCube (repCharges f S) = accCube S :=
|
||
accCube_ext
|
||
(fun j => toSpecies_sum_invariant 3 f S j)
|
||
(Hd_invariant f S)
|
||
(Hu_invariant f S)
|
||
|
||
end MSSM
|