118 lines
4.1 KiB
Text
118 lines
4.1 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.Basic
|
||
import HepLean.SpaceTime.Metric
|
||
import Mathlib.Algebra.Lie.Classical
|
||
/-!
|
||
# The Lorentz Algebra
|
||
|
||
We define
|
||
|
||
- Define `lorentzAlgebra` via `LieAlgebra.Orthogonal.so'` as a subalgebra of
|
||
`Matrix (Fin 4) (Fin 4) ℝ`.
|
||
- In `mem_iff` prove that a matrix is in the Lorentz algebra if and only if it satisfies the
|
||
condition `Aᵀ * η = - η * A`.
|
||
|
||
-/
|
||
|
||
|
||
namespace spaceTime
|
||
open Matrix
|
||
open TensorProduct
|
||
|
||
/-- The Lorentz algebra as a subalgebra of `Matrix (Fin 4) (Fin 4) ℝ`. -/
|
||
def lorentzAlgebra : LieSubalgebra ℝ (Matrix (Fin 4) (Fin 4) ℝ) :=
|
||
LieSubalgebra.map (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).toLieHom
|
||
(LieAlgebra.Orthogonal.so' (Fin 1) (Fin 3) ℝ)
|
||
|
||
namespace lorentzAlgebra
|
||
|
||
lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by
|
||
obtain ⟨B, hB1, hB2⟩ := A.2
|
||
apply (Equiv.apply_eq_iff_eq
|
||
(Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mp
|
||
simp only [Nat.reduceAdd, AlgEquiv.toEquiv_eq_coe, EquivLike.coe_coe, _root_.map_mul,
|
||
reindexAlgEquiv_apply, ← transpose_reindex, map_neg]
|
||
rw [(Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr
|
||
hB2.symm]
|
||
erw [η_reindex]
|
||
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using hB1
|
||
|
||
lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 4) (Fin 4) ℝ}
|
||
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
|
||
simp only [lorentzAlgebra, Nat.reduceAdd, LieSubalgebra.mem_map]
|
||
use (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).symm A
|
||
apply And.intro
|
||
· have h1 := (Equiv.apply_eq_iff_eq
|
||
(Matrix.reindexAlgEquiv ℝ (@finSumFinEquiv 1 3).symm).toEquiv).mpr h
|
||
erw [Matrix.reindexAlgEquiv_mul] at h1
|
||
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
|
||
EquivLike.coe_coe, map_neg, _root_.map_mul] at h1
|
||
erw [η_reindex] at h1
|
||
simpa [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply,
|
||
LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra,
|
||
mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg] using h1
|
||
· exact LieEquiv.apply_symm_apply (reindexLieEquiv finSumFinEquiv) _
|
||
|
||
|
||
lemma mem_iff {A : Matrix (Fin 4) (Fin 4) ℝ} : A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
|
||
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
|
||
|
||
lemma mem_iff' (A : Matrix (Fin 4) (Fin 4) ℝ) : A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by
|
||
apply Iff.intro
|
||
intro h
|
||
simp_rw [mul_assoc, mem_iff.mp h, neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg]
|
||
intro h
|
||
rw [mem_iff]
|
||
nth_rewrite 2 [h]
|
||
simp [← mul_assoc, η_sq]
|
||
|
||
lemma diag_comp (Λ : lorentzAlgebra) (μ : Fin 4) : Λ.1 μ μ = 0 := by
|
||
have h := congrArg (fun M ↦ M μ μ) $ mem_iff.mp Λ.2
|
||
simp at h
|
||
fin_cases μ <;>
|
||
rw [η_mul, mul_η, η_explicit] at h
|
||
<;> simpa using h
|
||
|
||
lemma time_comps (Λ : lorentzAlgebra) (i : Fin 3) : Λ.1 i.succ 0 = Λ.1 0 i.succ := by
|
||
have h := congrArg (fun M ↦ M 0 i.succ) $ mem_iff.mp Λ.2
|
||
simp at h
|
||
fin_cases i <;>
|
||
rw [η_mul, mul_η, η_explicit] at h <;>
|
||
simpa using h
|
||
|
||
lemma space_comps (Λ : lorentzAlgebra) (i j : Fin 3) :
|
||
Λ.1 i.succ j.succ = - Λ.1 j.succ i.succ := by
|
||
have h := congrArg (fun M ↦ M i.succ j.succ) $ mem_iff.mp Λ.2
|
||
simp at h
|
||
fin_cases i <;> fin_cases j <;>
|
||
rw [η_mul, mul_η, η_explicit] at h <;>
|
||
simpa using h.symm
|
||
|
||
|
||
end lorentzAlgebra
|
||
|
||
@[simps!]
|
||
instance spaceTimeAsLieRingModule : LieRingModule lorentzAlgebra spaceTime where
|
||
bracket Λ x := Λ.1.mulVec x
|
||
add_lie Λ1 Λ2 x := by
|
||
simp [add_mulVec]
|
||
lie_add Λ x1 x2 := by
|
||
simp only
|
||
exact mulVec_add _ _ _
|
||
leibniz_lie Λ1 Λ2 x := by
|
||
simp [mulVec_add, Bracket.bracket, sub_mulVec]
|
||
|
||
@[simps!]
|
||
instance spaceTimeAsLieModule : LieModule ℝ lorentzAlgebra spaceTime where
|
||
smul_lie r Λ x := by
|
||
simp [Bracket.bracket, smul_mulVec_assoc]
|
||
lie_smul r Λ x := by
|
||
simp [Bracket.bracket]
|
||
rw [mulVec_smul]
|
||
|
||
|
||
end spaceTime
|