PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/SuperCommute.lean
2025-01-30 11:00:25 +00:00

520 lines
21 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.TimeOrder
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.Basic
/-!
# SuperCommute on Field operator algebra
-/
namespace FieldSpecification
open CrAnAlgebra
open HepLean.List
open FieldStatistic
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
lemma ι_superCommuteF_eq_zero_of_ι_right_zero (a b : 𝓕.CrAnAlgebra) (h : ι b = 0) :
ι [a, b]ₛca = 0 := by
rw [superCommuteF_expand_bosonicProj_fermionicProj]
rw [ι_eq_zero_iff_ι_bosonicProj_fermonicProj_zero] at h
simp_all
lemma ι_superCommuteF_eq_zero_of_ι_left_zero (a b : 𝓕.CrAnAlgebra) (h : ι a = 0) :
ι [a, b]ₛca = 0 := by
rw [superCommuteF_expand_bosonicProj_fermionicProj]
rw [ι_eq_zero_iff_ι_bosonicProj_fermonicProj_zero] at h
simp_all
/-!
## Defining normal order for `FiedOpAlgebra`.
-/
lemma ι_superCommuteF_right_zero_of_mem_ideal (a b : 𝓕.CrAnAlgebra)
(h : b ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι [a, b]ₛca = 0 := by
apply ι_superCommuteF_eq_zero_of_ι_right_zero
exact (ι_eq_zero_iff_mem_ideal b).mpr h
lemma ι_superCommuteF_eq_of_equiv_right (a b1 b2 : 𝓕.CrAnAlgebra) (h : b1 ≈ b2) :
ι [a, b1]ₛca = ι [a, b2]ₛca := by
rw [equiv_iff_sub_mem_ideal] at h
rw [LinearMap.sub_mem_ker_iff.mp]
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_superCommuteF_right_zero_of_mem_ideal a (b1 - b2) h
/-- The super commutor on the `FieldOpAlgebra` defined as a linear map `[a,_]ₛ`. -/
noncomputable def superCommuteRight (a : 𝓕.CrAnAlgebra) :
FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ superCommuteF a)
(ι_superCommuteF_eq_of_equiv_right a)
map_add' x y := by
obtain ⟨x, hx⟩ := ι_surjective x
obtain ⟨y, hy⟩ := ι_surjective y
subst hx hy
rw [← map_add, ι_apply, ι_apply, ι_apply]
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
simp
map_smul' c y := by
obtain ⟨y, hy⟩ := ι_surjective y
subst hy
rw [← map_smul, ι_apply, ι_apply]
simp
lemma superCommuteRight_apply_ι (a b : 𝓕.CrAnAlgebra) :
superCommuteRight a (ι b) = ι [a, b]ₛca := by rfl
lemma superCommuteRight_apply_quot (a b : 𝓕.CrAnAlgebra) :
superCommuteRight a ⟦b⟧= ι [a, b]ₛca := by rfl
lemma superCommuteRight_eq_of_equiv (a1 a2 : 𝓕.CrAnAlgebra) (h : a1 ≈ a2) :
superCommuteRight a1 = superCommuteRight a2 := by
rw [equiv_iff_sub_mem_ideal] at h
ext b
obtain ⟨b, rfl⟩ := ι_surjective b
have ha1b1 : (superCommuteRight (a1 - a2)) (ι b) = 0 := by
rw [superCommuteRight_apply_ι]
apply ι_superCommuteF_eq_zero_of_ι_left_zero
exact (ι_eq_zero_iff_mem_ideal (a1 - a2)).mpr h
simp_all only [superCommuteRight_apply_ι, map_sub, LinearMap.sub_apply]
trans ι ((superCommuteF a2) b) + 0
rw [← ha1b1]
simp only [add_sub_cancel]
simp
/-- The super commutor on the `FieldOpAlgebra`. -/
noncomputable def superCommute : FieldOpAlgebra 𝓕 →ₗ[]
FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift superCommuteRight superCommuteRight_eq_of_equiv
map_add' x y := by
obtain ⟨x, rfl⟩ := ι_surjective x
obtain ⟨y, rfl⟩ := ι_surjective y
ext b
obtain ⟨b, rfl⟩ := ι_surjective b
rw [← map_add, ι_apply, ι_apply, ι_apply, ι_apply]
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
simp only [LinearMap.add_apply]
rw [superCommuteRight_apply_quot, superCommuteRight_apply_quot, superCommuteRight_apply_quot]
simp
map_smul' c y := by
obtain ⟨y, rfl⟩ := ι_surjective y
ext b
obtain ⟨b, rfl⟩ := ι_surjective b
rw [← map_smul, ι_apply, ι_apply, ι_apply]
simp only [Quotient.lift_mk, RingHom.id_apply, LinearMap.smul_apply]
rw [superCommuteRight_apply_quot, superCommuteRight_apply_quot]
simp
@[inherit_doc superCommute]
scoped[FieldSpecification.FieldOpAlgebra] notation "[" a "," b "]ₛ" => superCommute a b
lemma superCommute_eq_ι_superCommuteF (a b : 𝓕.CrAnAlgebra) :
[ι a, ι b]ₛ = ι [a, b]ₛca := rfl
/-!
## Properties of `superCommute`.
-/
/-!
## Properties from the definition of FieldOpAlgebra
-/
lemma superCommute_create_create {φ φ' : 𝓕.CrAnStates}
(h : 𝓕 |>ᶜ φ = .create) (h' : 𝓕 |>ᶜ φ' = .create) :
[ofCrAnFieldOp φ, ofCrAnFieldOp φ']ₛ = 0 := by
rw [ofCrAnFieldOp, ofCrAnFieldOp]
rw [superCommute_eq_ι_superCommuteF, ι_superCommuteF_of_create_create _ _ h h']
lemma superCommute_annihilate_annihilate {φ φ' : 𝓕.CrAnStates}
(h : 𝓕 |>ᶜ φ = .annihilate) (h' : 𝓕 |>ᶜ φ' = .annihilate) :
[ofCrAnFieldOp φ, ofCrAnFieldOp φ']ₛ = 0 := by
rw [ofCrAnFieldOp, ofCrAnFieldOp]
rw [superCommute_eq_ι_superCommuteF, ι_superCommuteF_of_annihilate_annihilate _ _ h h']
lemma superCommute_diff_statistic {φ φ' : 𝓕.CrAnStates} (h : (𝓕 |>ₛ φ) ≠ 𝓕 |>ₛ φ') :
[ofCrAnFieldOp φ, ofCrAnFieldOp φ']ₛ = 0 := by
rw [ofCrAnFieldOp, ofCrAnFieldOp]
rw [superCommute_eq_ι_superCommuteF, ι_superCommuteF_of_diff_statistic h]
lemma superCommute_ofCrAnFieldOp_ofFieldOp_diff_stat_zero (φ : 𝓕.CrAnStates) (ψ : 𝓕.States)
(h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) : [ofCrAnFieldOp φ, ofFieldOp ψ]ₛ = 0 := by
rw [ofFieldOp_eq_sum, map_sum]
rw [Finset.sum_eq_zero]
intro x hx
apply superCommute_diff_statistic
simpa [crAnStatistics] using h
lemma superCommute_anPart_ofState_diff_grade_zero (φ ψ : 𝓕.States)
(h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) : [anPart φ, ofFieldOp ψ]ₛ = 0 := by
match φ with
| States.inAsymp _ =>
simp
| States.position φ =>
simp only [anPartF_position]
apply superCommute_ofCrAnFieldOp_ofFieldOp_diff_stat_zero _ _ _
simpa [crAnStatistics] using h
| States.outAsymp _ =>
simp only [anPartF_posAsymp]
apply superCommute_ofCrAnFieldOp_ofFieldOp_diff_stat_zero _ _
simpa [crAnStatistics] using h
lemma superCommute_ofCrAnFieldOp_ofCrAnFieldOp_mem_center (φ φ' : 𝓕.CrAnStates) :
[ofCrAnFieldOp φ, ofCrAnFieldOp φ']ₛ ∈ Subalgebra.center (FieldOpAlgebra 𝓕) := by
rw [ofCrAnFieldOp, ofCrAnFieldOp, superCommute_eq_ι_superCommuteF]
exact ι_superCommuteF_ofCrAnState_ofCrAnState_mem_center φ φ'
lemma superCommute_ofCrAnFieldOp_ofCrAnFieldOp_commute (φ φ' : 𝓕.CrAnStates) (a : FieldOpAlgebra 𝓕) :
a * [ofCrAnFieldOp φ, ofCrAnFieldOp φ']ₛ = [ofCrAnFieldOp φ, ofCrAnFieldOp φ']ₛ * a := by
have h1 := superCommute_ofCrAnFieldOp_ofCrAnFieldOp_mem_center φ φ'
rw [@Subalgebra.mem_center_iff] at h1
exact h1 a
lemma superCommute_ofCrAnFieldOp_ofFieldOp_mem_center (φ : 𝓕.CrAnStates) (φ' : 𝓕.States) :
[ofCrAnFieldOp φ, ofFieldOp φ']ₛ ∈ Subalgebra.center (FieldOpAlgebra 𝓕) := by
rw [ofFieldOp_eq_sum]
simp
refine Subalgebra.sum_mem (Subalgebra.center 𝓕.FieldOpAlgebra) ?_
intro x hx
exact superCommute_ofCrAnFieldOp_ofCrAnFieldOp_mem_center φ ⟨φ', x⟩
lemma superCommute_ofCrAnFieldOp_ofFieldOp_commute (φ : 𝓕.CrAnStates) (φ' : 𝓕.States)
(a : FieldOpAlgebra 𝓕) : a * [ofCrAnFieldOp φ, ofFieldOp φ']ₛ =
[ofCrAnFieldOp φ, ofFieldOp φ']ₛ * a := by
have h1 := superCommute_ofCrAnFieldOp_ofFieldOp_mem_center φ φ'
rw [@Subalgebra.mem_center_iff] at h1
exact h1 a
lemma superCommute_anPart_ofFieldOp_mem_center (φ φ' : 𝓕.States) :
[anPart φ, ofFieldOp φ']ₛ ∈ Subalgebra.center (FieldOpAlgebra 𝓕) := by
match φ with
| States.inAsymp _ =>
simp only [anPart_negAsymp, map_zero, LinearMap.zero_apply]
exact Subalgebra.zero_mem (Subalgebra.center _)
| States.position φ =>
exact superCommute_ofCrAnFieldOp_ofFieldOp_mem_center _ _
| States.outAsymp _ =>
exact superCommute_ofCrAnFieldOp_ofFieldOp_mem_center _ _
/-!
### `superCommute` on different constructors.
-/
lemma superCommute_ofCrAnFieldOpList_ofCrAnFieldOpList (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnFieldOpList φs, ofCrAnFieldOpList φs']ₛ =
ofCrAnFieldOpList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnFieldOpList (φs' ++ φs) := by
rw [ofCrAnFieldOpList_eq_ι_ofCrAnList, ofCrAnFieldOpList_eq_ι_ofCrAnList]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofCrAnList_ofCrAnList]
rfl
lemma superCommute_ofCrAnFieldOp_ofCrAnFieldOp (φ φ' : 𝓕.CrAnStates) :
[ofCrAnFieldOp φ, ofCrAnFieldOp φ']ₛ = ofCrAnFieldOp φ * ofCrAnFieldOp φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnFieldOp φ' * ofCrAnFieldOp φ := by
rw [ofCrAnFieldOp, ofCrAnFieldOp]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofCrAnState_ofCrAnState]
rfl
lemma superCommute_ofCrAnFieldOpList_ofFieldOpList (φcas : List 𝓕.CrAnStates)
(φs : List 𝓕.States) :
[ofCrAnFieldOpList φcas, ofFieldOpList φs]ₛ = ofCrAnFieldOpList φcas * ofFieldOpList φs -
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofFieldOpList φs * ofCrAnFieldOpList φcas := by
rw [ofCrAnFieldOpList, ofFieldOpList]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofCrAnList_ofStatesList]
rfl
lemma superCommute_ofFieldOpList_ofFieldOpList (φs φs' : List 𝓕.States) :
[ofFieldOpList φs, ofFieldOpList φs']ₛ = ofFieldOpList φs * ofFieldOpList φs' -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpList φs' * ofFieldOpList φs := by
rw [ofFieldOpList, ofFieldOpList]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofStateList_ofStatesList]
rfl
lemma superCommute_ofFieldOp_ofFieldOpList (φ : 𝓕.States) (φs : List 𝓕.States) :
[ofFieldOp φ, ofFieldOpList φs]ₛ = ofFieldOp φ * ofFieldOpList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpList φs * ofFieldOp φ := by
rw [ofFieldOp, ofFieldOpList]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofState_ofStatesList]
rfl
lemma superCommute_ofFieldOpList_ofFieldOp (φs : List 𝓕.States) (φ : 𝓕.States) :
[ofFieldOpList φs, ofFieldOp φ]ₛ = ofFieldOpList φs * ofFieldOp φ -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOp φ * ofFieldOpList φs := by
rw [ofFieldOpList, ofFieldOp]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofStateList_ofState]
rfl
lemma superCommute_anPart_crPart (φ φ' : 𝓕.States) :
[anPart φ, crPart φ']ₛ = anPart φ * crPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * anPart φ := by
rw [anPart, crPart]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_anPartF_crPartF]
rfl
lemma superCommute_crPart_anPart (φ φ' : 𝓕.States) :
[crPart φ, anPart φ']ₛ = crPart φ * anPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart φ' * crPart φ := by
rw [anPart, crPart]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_crPartF_anPartF]
rfl
@[simp]
lemma superCommute_crPart_crPart (φ φ' : 𝓕.States) : [crPart φ, crPart φ']ₛ = 0 := by
match φ, φ' with
| States.outAsymp φ, _ =>
simp
| _, States.outAsymp φ =>
simp
| States.position φ, States.position φ' =>
simp only [crPart_position]
apply superCommute_create_create
· rfl
· rfl
| States.position φ, States.inAsymp φ' =>
simp only [crPart_position, crPart_negAsymp]
apply superCommute_create_create
· rfl
· rfl
| States.inAsymp φ, States.inAsymp φ' =>
simp only [crPart_negAsymp]
apply superCommute_create_create
· rfl
· rfl
| States.inAsymp φ, States.position φ' =>
simp only [crPart_negAsymp, crPart_position]
apply superCommute_create_create
· rfl
· rfl
@[simp]
lemma superCommute_anPart_anPart (φ φ' : 𝓕.States) : [anPart φ, anPart φ']ₛ = 0 := by
match φ, φ' with
| States.inAsymp φ, _ =>
simp
| _, States.inAsymp φ =>
simp
| States.position φ, States.position φ' =>
simp only [anPart_position]
apply superCommute_annihilate_annihilate
· rfl
· rfl
| States.position φ, States.outAsymp φ' =>
simp only [anPart_position, anPart_posAsymp]
apply superCommute_annihilate_annihilate
· rfl
· rfl
| States.outAsymp φ, States.outAsymp φ' =>
simp only [anPart_posAsymp]
apply superCommute_annihilate_annihilate
· rfl
· rfl
| States.outAsymp φ, States.position φ' =>
simp only [anPart_posAsymp, anPart_position]
apply superCommute_annihilate_annihilate
· rfl
· rfl
lemma superCommute_crPart_ofFieldOpList (φ : 𝓕.States) (φs : List 𝓕.States) :
[crPart φ, ofFieldOpList φs]ₛ = crPart φ * ofFieldOpList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpList φs * crPart φ := by
rw [crPart, ofFieldOpList]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_crPartF_ofStateList]
rfl
lemma superCommute_anPart_ofFieldOpList (φ : 𝓕.States) (φs : List 𝓕.States) :
[anPart φ, ofFieldOpList φs]ₛ = anPart φ * ofFieldOpList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpList φs * anPart φ := by
rw [anPart, ofFieldOpList]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_anPartF_ofStateList]
rfl
lemma superCommute_crPart_ofFieldOp (φ φ' : 𝓕.States) :
[crPart φ, ofFieldOp φ']ₛ = crPart φ * ofFieldOp φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofFieldOp φ' * crPart φ := by
rw [crPart, ofFieldOp]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_crPartF_ofState]
rfl
lemma superCommute_anPart_ofFieldOp (φ φ' : 𝓕.States) :
[anPart φ, ofFieldOp φ']ₛ = anPart φ * ofFieldOp φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofFieldOp φ' * anPart φ := by
rw [anPart, ofFieldOp]
rw [superCommute_eq_ι_superCommuteF, superCommuteF_anPartF_ofState]
rfl
/-!
## Mul equal superCommute
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
multiplication with a sign plus the super commutor.
-/
lemma ofCrAnFieldOpList_mul_ofCrAnFieldOpList_eq_superCommute (φs φs' : List 𝓕.CrAnStates) :
ofCrAnFieldOpList φs * ofCrAnFieldOpList φs' =
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnFieldOpList φs' * ofCrAnFieldOpList φs
+ [ofCrAnFieldOpList φs, ofCrAnFieldOpList φs']ₛ := by
rw [superCommute_ofCrAnFieldOpList_ofCrAnFieldOpList]
simp [ofCrAnFieldOpList_append]
lemma ofCrAnFieldOp_mul_ofCrAnFieldOpList_eq_superCommute (φ : 𝓕.CrAnStates)
(φs' : List 𝓕.CrAnStates) : ofCrAnFieldOp φ * ofCrAnFieldOpList φs' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnFieldOpList φs' * ofCrAnFieldOp φ
+ [ofCrAnFieldOp φ, ofCrAnFieldOpList φs']ₛ := by
rw [← ofCrAnFieldOpList_singleton, ofCrAnFieldOpList_mul_ofCrAnFieldOpList_eq_superCommute]
simp
lemma ofFieldOpList_mul_ofFieldOpList_eq_superCommute (φs φs' : List 𝓕.States) :
ofFieldOpList φs * ofFieldOpList φs' =
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpList φs' * ofFieldOpList φs
+ [ofFieldOpList φs, ofFieldOpList φs']ₛ := by
rw [superCommute_ofFieldOpList_ofFieldOpList]
simp
lemma ofFieldOp_mul_ofFieldOpList_eq_superCommute (φ : 𝓕.States) (φs' : List 𝓕.States) :
ofFieldOp φ * ofFieldOpList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofFieldOpList φs' * ofFieldOp φ
+ [ofFieldOp φ, ofFieldOpList φs']ₛ := by
rw [superCommute_ofFieldOp_ofFieldOpList]
simp
lemma ofFieldOp_mul_ofFieldOp_eq_superCommute (φ φ' : 𝓕.States) :
ofFieldOp φ * ofFieldOp φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofFieldOp φ' * ofFieldOp φ
+ [ofFieldOp φ, ofFieldOp φ']ₛ := by
rw [← ofFieldOpList_singleton, ← ofFieldOpList_singleton]
rw [ofFieldOpList_mul_ofFieldOpList_eq_superCommute, ofFieldOpList_singleton]
simp
lemma ofFieldOpList_mul_ofFieldOp_eq_superCommute (φs : List 𝓕.States) (φ : 𝓕.States) :
ofFieldOpList φs * ofFieldOp φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOp φ * ofFieldOpList φs
+ [ofFieldOpList φs, ofFieldOp φ]ₛ := by
rw [superCommute_ofFieldOpList_ofFieldOp]
simp
lemma ofCrAnFieldOpList_mul_ofFieldOpList_eq_superCommute (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) : ofCrAnFieldOpList φs * ofFieldOpList φs' =
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpList φs' * ofCrAnFieldOpList φs
+ [ofCrAnFieldOpList φs, ofFieldOpList φs']ₛ := by
rw [superCommute_ofCrAnFieldOpList_ofFieldOpList]
simp
lemma crPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
crPart φ * anPart φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart φ' * crPart φ
+ [crPart φ, anPart φ']ₛ := by
rw [superCommute_crPart_anPart]
simp
lemma anPart_mul_crPart_eq_superCommute (φ φ' : 𝓕.States) :
anPart φ * crPart φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * anPart φ
+ [anPart φ, crPart φ']ₛ := by
rw [superCommute_anPart_crPart]
simp
lemma crPart_mul_crPart_swap (φ φ' : 𝓕.States) :
crPart φ * crPart φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * crPart φ := by
trans 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * crPart φ + [crPart φ, crPart φ']ₛ
· rw [crPart, crPart, superCommute_eq_ι_superCommuteF, superCommuteF_crPartF_crPartF]
simp
· simp
lemma anPart_mul_anPart_swap (φ φ' : 𝓕.States) :
anPart φ * anPart φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart φ' * anPart φ := by
trans 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart φ' * anPart φ + [anPart φ, anPart φ']ₛ
· rw [anPart, anPart, superCommute_eq_ι_superCommuteF, superCommuteF_anPartF_anPartF]
simp
· simp
/-!
## Symmetry of the super commutor.
-/
lemma superCommute_ofCrAnFieldOpList_ofCrAnFieldOpList_symm (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnFieldOpList φs, ofCrAnFieldOpList φs']ₛ =
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnFieldOpList φs', ofCrAnFieldOpList φs]ₛ := by
rw [ofCrAnFieldOpList, ofCrAnFieldOpList, superCommute_eq_ι_superCommuteF,
superCommuteF_ofCrAnList_ofCrAnList_symm]
rfl
lemma superCommute_ofCrAnFieldOp_ofCrAnFieldOp_symm (φ φ' : 𝓕.CrAnStates) :
[ofCrAnFieldOp φ, ofCrAnFieldOp φ']ₛ =
(- 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ')) • [ofCrAnFieldOp φ', ofCrAnFieldOp φ]ₛ := by
rw [ofCrAnFieldOp, ofCrAnFieldOp, superCommute_eq_ι_superCommuteF,
superCommuteF_ofCrAnState_ofCrAnState_symm]
rfl
/-!
## splitting the super commute into sums
-/
lemma superCommute_ofCrAnFieldOpList_ofCrAnFieldOpList_eq_sum (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnFieldOpList φs, ofCrAnFieldOpList φs']ₛ =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
ofCrAnFieldOpList (φs'.take n) * [ofCrAnFieldOpList φs, ofCrAnFieldOp (φs'.get n)]ₛ *
ofCrAnFieldOpList (φs'.drop (n + 1)) := by
conv_lhs =>
rw [ofCrAnFieldOpList, ofCrAnFieldOpList, superCommute_eq_ι_superCommuteF,
superCommuteF_ofCrAnList_ofCrAnList_eq_sum]
rw [map_sum]
rfl
lemma superCommute_ofCrAnFieldOp_ofCrAnFieldOpList_eq_sum (φ : 𝓕.CrAnStates) (φs' : List 𝓕.CrAnStates) :
[ofCrAnFieldOp φ, ofCrAnFieldOpList φs']ₛ =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs'.take n) •
[ofCrAnFieldOp φ, ofCrAnFieldOp (φs'.get n)]ₛ * ofCrAnFieldOpList (φs'.eraseIdx n) := by
conv_lhs =>
rw [← ofCrAnFieldOpList_singleton, superCommute_ofCrAnFieldOpList_ofCrAnFieldOpList_eq_sum]
congr
funext n
simp
congr 1
rw [ofCrAnFieldOpList_singleton, superCommute_ofCrAnFieldOp_ofCrAnFieldOp_commute]
rw [mul_assoc, ← ofCrAnFieldOpList_append]
congr
exact Eq.symm (List.eraseIdx_eq_take_drop_succ φs' ↑n)
lemma superCommute_ofCrAnFieldOpList_ofFieldOpList_eq_sum (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) : [ofCrAnFieldOpList φs, ofFieldOpList φs']ₛ =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
ofFieldOpList (φs'.take n) * [ofCrAnFieldOpList φs, ofFieldOp (φs'.get n)]ₛ *
ofFieldOpList (φs'.drop (n + 1)) := by
conv_lhs =>
rw [ofCrAnFieldOpList, ofFieldOpList, superCommute_eq_ι_superCommuteF,
superCommuteF_ofCrAnList_ofStateList_eq_sum]
rw [map_sum]
rfl
lemma superCommute_ofCrAnFieldOp_ofFieldOpList_eq_sum (φ : 𝓕.CrAnStates) (φs' : List 𝓕.States) :
[ofCrAnFieldOp φ, ofFieldOpList φs']ₛ =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs'.take n) •
[ofCrAnFieldOp φ, ofFieldOp (φs'.get n)]ₛ * ofFieldOpList (φs'.eraseIdx n) := by
conv_lhs =>
rw [← ofCrAnFieldOpList_singleton, superCommute_ofCrAnFieldOpList_ofFieldOpList_eq_sum]
congr
funext n
simp
congr 1
rw [ofCrAnFieldOpList_singleton, superCommute_ofCrAnFieldOp_ofFieldOp_commute]
rw [mul_assoc, ← ofFieldOpList_append]
congr
exact Eq.symm (List.eraseIdx_eq_take_drop_succ φs' ↑n)
end FieldOpAlgebra
end FieldSpecification