PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/TimeContraction.lean
2025-01-30 11:00:25 +00:00

87 lines
3.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.TimeOrder
/-!
# Time contractions
We define the state algebra of a field structure to be the free algebra
generated by the states.
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open CrAnAlgebra
noncomputable section
namespace FieldOpAlgebra
open FieldStatistic
/-- The time contraction of two States as an element of `𝓞.A` defined
as their time ordering in the state algebra minus their normal ordering in the
creation and annihlation algebra, both mapped to `𝓞.A`.. -/
def timeContract (φ ψ : 𝓕.States) : 𝓕.FieldOpAlgebra :=
𝓣(ofFieldOp φ * ofFieldOp ψ) - 𝓝(ofFieldOp φ * ofFieldOp ψ)
lemma timeContract_eq_smul (φ ψ : 𝓕.States) : timeContract φ ψ =
𝓣(ofFieldOp φ * ofFieldOp ψ) + (-1 : ) • 𝓝(ofFieldOp φ * ofFieldOp ψ) := by rfl
lemma timeContract_of_timeOrderRel (φ ψ : 𝓕.States) (h : timeOrderRel φ ψ) :
timeContract φ ψ = [anPart φ, ofFieldOp ψ]ₛ := by
conv_rhs =>
rw [ofFieldOp_eq_crPart_add_anPart]
rw [map_add, superCommute_anPart_anPart, superCommute_anPart_crPart]
simp only [timeContract, instCommGroup.eq_1, Algebra.smul_mul_assoc, add_zero]
rw [timeOrder_ofFieldOp_ofFieldOp_ordered h]
rw [normalOrder_ofFieldOp_mul_ofFieldOp]
simp only [instCommGroup.eq_1]
rw [ofFieldOp_eq_crPart_add_anPart, ofFieldOp_eq_crPart_add_anPart]
simp only [mul_add, add_mul]
abel_nf
lemma timeContract_of_not_timeOrderRel (φ ψ : 𝓕.States) (h : ¬ timeOrderRel φ ψ) :
timeContract φ ψ = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • timeContract ψ φ := by
rw [timeContract_eq_smul]
simp only [Int.reduceNeg, one_smul, map_add]
rw [normalOrder_ofFieldOp_ofFieldOp_swap]
rw [timeOrder_ofFieldOp_ofFieldOp_not_ordered_eq_timeOrder h]
rw [timeContract_eq_smul]
simp only [instCommGroup.eq_1, map_smul, map_add, smul_add]
rw [smul_smul, smul_smul, mul_comm]
lemma timeContract_mem_center (φ ψ : 𝓕.States) :
timeContract φ ψ ∈ Subalgebra.center 𝓕.FieldOpAlgebra := by
by_cases h : timeOrderRel φ ψ
· rw [timeContract_of_timeOrderRel _ _ h]
exact superCommute_anPart_ofFieldOp_mem_center φ ψ
· rw [timeContract_of_not_timeOrderRel _ _ h]
refine Subalgebra.smul_mem (Subalgebra.center _) ?_ 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ)
rw [timeContract_of_timeOrderRel]
exact superCommute_anPart_ofFieldOp_mem_center _ _
have h1 := IsTotal.total (r := 𝓕.timeOrderRel) φ ψ
simp_all
lemma timeContract_zero_of_diff_grade (φ ψ : 𝓕.States) (h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) :
timeContract φ ψ = 0 := by
by_cases h1 : timeOrderRel φ ψ
· rw [timeContract_of_timeOrderRel _ _ h1]
rw [superCommute_anPart_ofState_diff_grade_zero]
exact h
· rw [timeContract_of_not_timeOrderRel _ _ h1]
rw [timeContract_of_timeOrderRel _ _ _]
rw [superCommute_anPart_ofState_diff_grade_zero]
simp only [instCommGroup.eq_1, smul_zero]
exact h.symm
have ht := IsTotal.total (r := 𝓕.timeOrderRel) φ ψ
simp_all
end FieldOpAlgebra
end
end FieldSpecification