PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/TimeOrder.lean
2025-02-03 05:39:48 +00:00

508 lines
22 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.TimeOrder
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.SuperCommute
/-!
# Time Ordering on Field operator algebra
-/
namespace FieldSpecification
open CrAnAlgebra
open HepLean.List
open FieldStatistic
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3 : 𝓕.CrAnStates}
(φs1 φs2 : List 𝓕.CrAnStates) (h :
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2) :
ι 𝓣ᶠ(ofCrAnList φs1 * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca *
ofCrAnList φs2) = 0 := by
let l1 :=
(List.takeWhile (fun c => ¬ crAnTimeOrderRel φ1 c)
((φs1 ++ φs2).insertionSort crAnTimeOrderRel))
++ (List.filter (fun c => crAnTimeOrderRel φ1 c ∧ crAnTimeOrderRel c φ1) φs1)
let l2 := (List.filter (fun c => crAnTimeOrderRel φ1 c ∧ crAnTimeOrderRel c φ1) φs2)
++ (List.filter (fun c => crAnTimeOrderRel φ1 c ∧ ¬ crAnTimeOrderRel c φ1)
((φs1 ++ φs2).insertionSort crAnTimeOrderRel))
have h123 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)) =
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ2, φ3]) * ι (ofCrAnList l2)) := by
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ1, φ2, φ3] φs2
(by simp_all)
rw [timeOrderF_ofCrAnList, show φs1 ++ φ1 :: φ2 :: φ3 :: φs2 = φs1 ++ [φ1, φ2, φ3] ++ φs2
by simp, crAnTimeOrderList, h1]
simp only [List.append_assoc, List.singleton_append, decide_not,
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
have h132 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ1 :: φ3 :: φ2 :: φs2)) =
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ3, φ2]) * ι (ofCrAnList l2)) := by
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ1, φ3, φ2] φs2
(by simp_all)
rw [timeOrderF_ofCrAnList, show φs1 ++ φ1 :: φ3 :: φ2 :: φs2 = φs1 ++ [φ1, φ3, φ2] ++ φs2
by simp, crAnTimeOrderList, h1]
simp only [List.singleton_append, decide_not,
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
congr 1
have hp : List.Perm [φ1, φ3, φ2] [φ1, φ2, φ3] := by
refine List.Perm.cons φ1 ?_
exact List.Perm.swap φ2 φ3 []
rw [crAnTimeOrderSign, Wick.koszulSign_perm_eq _ _ φ1 _ _ _ _ _ hp, ← crAnTimeOrderSign]
· simp
· intro φ4 hφ4
simp only [List.mem_cons, List.mem_singleton, List.not_mem_nil, or_false] at hφ4
rcases hφ4 with hφ4 | hφ4 | hφ4
all_goals
subst hφ4
simp_all
have hp231 : List.Perm [φ2, φ3, φ1] [φ1, φ2, φ3] := by
refine List.Perm.trans (l₂ := [φ2, φ1, φ3]) ?_ ?_
refine List.Perm.cons φ2 (List.Perm.swap φ1 φ3 [])
exact List.Perm.swap φ1 φ2 [φ3]
have h231 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ2 :: φ3 :: φ1 :: φs2)) =
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ2, φ3, φ1]) * ι (ofCrAnList l2)) := by
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ2, φ3, φ1] φs2
(by simp_all)
rw [timeOrderF_ofCrAnList, show φs1 ++ φ2 :: φ3 :: φ1 :: φs2 = φs1 ++ [φ2, φ3, φ1] ++ φs2
by simp, crAnTimeOrderList, h1]
simp only [List.singleton_append, decide_not,
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
congr 1
rw [crAnTimeOrderSign, Wick.koszulSign_perm_eq _ _ φ1 _ _ _ _ _ hp231, ← crAnTimeOrderSign]
· simp
· intro φ4 hφ4
simp only [List.mem_cons, List.mem_singleton, List.not_mem_nil, or_false] at hφ4
rcases hφ4 with hφ4 | hφ4 | hφ4
all_goals
subst hφ4
simp_all
have h321 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ3 :: φ2 :: φ1 :: φs2)) =
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ3, φ2, φ1]) * ι (ofCrAnList l2)) := by
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ3, φ2, φ1] φs2
(by simp_all)
rw [timeOrderF_ofCrAnList, show φs1 ++ φ3 :: φ2 :: φ1 :: φs2 = φs1 ++ [φ3, φ2, φ1] ++ φs2
by simp, crAnTimeOrderList, h1]
simp only [List.singleton_append, decide_not,
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
congr 1
have hp : List.Perm [φ3, φ2, φ1] [φ1, φ2, φ3] := by
refine List.Perm.trans ?_ hp231
exact List.Perm.swap φ2 φ3 [φ1]
rw [crAnTimeOrderSign, Wick.koszulSign_perm_eq _ _ φ1 _ _ _ _ _ hp, ← crAnTimeOrderSign]
· simp
· intro φ4 hφ4
simp only [List.mem_cons, List.mem_singleton, List.not_mem_nil, or_false] at hφ4
rcases hφ4 with hφ4 | hφ4 | hφ4
all_goals
subst hφ4
simp_all
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton]
rw [superCommuteF_ofCrAnList_ofCrAnList]
simp only [List.singleton_append, instCommGroup.eq_1, ofList_singleton, map_sub, map_smul]
rw [superCommuteF_ofCrAnList_ofCrAnList, superCommuteF_ofCrAnList_ofCrAnList]
simp only [List.cons_append, List.nil_append, instCommGroup.eq_1, ofList_singleton, mul_sub, ←
ofCrAnList_append, Algebra.mul_smul_comm, sub_mul, List.append_assoc, Algebra.smul_mul_assoc,
map_sub, map_smul]
rw [h123, h132, h231, h321]
simp only [smul_smul]
rw [mul_comm, ← smul_smul, mul_comm, ← smul_smul]
rw [← smul_sub, ← smul_sub, smul_smul, mul_comm, ← smul_smul, ← smul_sub]
simp only [smul_eq_zero]
right
rw [← smul_mul_assoc, ← mul_smul_comm, mul_assoc]
rw [← smul_mul_assoc, ← mul_smul_comm]
rw [smul_sub]
rw [← smul_mul_assoc, ← mul_smul_comm]
rw [← smul_mul_assoc, ← mul_smul_comm]
repeat rw [mul_assoc]
rw [← mul_sub, ← mul_sub, ← mul_sub]
rw [← sub_mul, ← sub_mul, ← sub_mul]
trans ι (ofCrAnList l1) * ι [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca *
ι (ofCrAnList l2)
rw [mul_assoc]
congr
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton]
rw [superCommuteF_ofCrAnList_ofCrAnList]
simp only [List.singleton_append, instCommGroup.eq_1, ofList_singleton, map_sub, map_smul]
rw [superCommuteF_ofCrAnList_ofCrAnList, superCommuteF_ofCrAnList_ofCrAnList]
simp only [List.cons_append, List.nil_append, instCommGroup.eq_1, ofList_singleton, map_sub,
map_smul, smul_sub]
simp_all
lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnList {φ1 φ2 φ3 : 𝓕.CrAnStates}
(φs1 φs2 : List 𝓕.CrAnStates) :
ι 𝓣ᶠ(ofCrAnList φs1 * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * ofCrAnList φs2)
= 0 := by
by_cases h :
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2
· exact ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList φs1 φs2 h
· rw [timeOrderF_timeOrderF_mid]
rw [timeOrderF_superCommuteF_ofCrAnState_superCommuteF_all_not_crAnTimeOrderRel _ _ _ h]
simp
@[simp]
lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates} (a b : 𝓕.CrAnAlgebra) :
ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * b) = 0 := by
let pb (b : 𝓕.CrAnAlgebra) (hc : b ∈ Submodule.span (Set.range ofCrAnListBasis)) :
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * b) = 0
change pb b (Basis.mem_span _ b)
apply Submodule.span_induction
· intro x hx
obtain ⟨φs, rfl⟩ := hx
simp only [ofListBasis_eq_ofList, pb]
let pa (a : 𝓕.CrAnAlgebra) (hc : a ∈ Submodule.span (Set.range ofCrAnListBasis)) :
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * ofCrAnList φs) = 0
change pa a (Basis.mem_span _ a)
apply Submodule.span_induction
· intro x hx
obtain ⟨φs', rfl⟩ := hx
simp only [ofListBasis_eq_ofList, pa]
exact ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnList φs' φs
· simp [pa]
· intro x y hx hy hpx hpy
simp_all [pa,mul_add, add_mul]
· intro x hx hpx
simp_all [pa, hpx]
· simp [pb]
· intro x y hx hy hpx hpy
simp_all [pb,mul_add, add_mul]
· intro x hx hpx
simp_all [pb, hpx]
lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (a b : 𝓕.CrAnAlgebra) :
ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) =
ι ([ofCrAnState φ, ofCrAnState ψ]ₛca * 𝓣ᶠ(a * b)) := by
let pb (b : 𝓕.CrAnAlgebra) (hc : b ∈ Submodule.span (Set.range ofCrAnListBasis)) :
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) =
ι ([ofCrAnState φ, ofCrAnState ψ]ₛca * 𝓣ᶠ(a * b))
change pb b (Basis.mem_span _ b)
apply Submodule.span_induction
· intro x hx
obtain ⟨φs, rfl⟩ := hx
simp only [ofListBasis_eq_ofList, map_mul, pb]
let pa (a : 𝓕.CrAnAlgebra) (hc : a ∈ Submodule.span (Set.range ofCrAnListBasis)) :
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * ofCrAnList φs) =
ι ([ofCrAnState φ, ofCrAnState ψ]ₛca * 𝓣ᶠ(a* ofCrAnList φs))
change pa a (Basis.mem_span _ a)
apply Submodule.span_induction
· intro x hx
obtain ⟨φs', rfl⟩ := hx
simp only [ofListBasis_eq_ofList, map_mul, pa]
conv_lhs =>
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [mul_sub, sub_mul, ← ofCrAnList_append]
rw [timeOrderF_ofCrAnList, timeOrderF_ofCrAnList]
have h1 : crAnTimeOrderSign (φs' ++ φ :: ψ :: φs) =
crAnTimeOrderSign (φs' ++ ψ :: φ :: φs) := by
trans crAnTimeOrderSign (φs' ++ [φ, ψ] ++ φs)
simp only [List.append_assoc, List.cons_append, List.nil_append]
rw [crAnTimeOrderSign]
have hp : List.Perm [φ,ψ] [ψ,φ] := by exact List.Perm.swap ψ φ []
rw [Wick.koszulSign_perm_eq _ _ φ _ _ _ _ _ hp]
simp only [List.append_assoc, List.cons_append, List.singleton_append]
rfl
simp_all
rw [h1]
simp only [map_smul]
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ φs' [φ, ψ] φs
(by simp_all)
rw [crAnTimeOrderList, show φs' ++ φ :: ψ :: φs = φs' ++ [φ, ψ] ++ φs by simp, h1]
have h2 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ φs' [ψ, φ] φs
(by simp_all)
rw [crAnTimeOrderList, show φs' ++ ψ :: φ :: φs = φs' ++ [ψ, φ] ++ φs by simp, h2]
repeat rw [ofCrAnList_append]
rw [smul_smul, mul_comm, ← smul_smul, ← smul_sub]
rw [map_mul, map_mul, map_mul, map_mul, map_mul, map_mul, map_mul, map_mul]
rw [← mul_smul_comm]
rw [mul_assoc, mul_assoc, mul_assoc, mul_assoc, mul_assoc, mul_assoc]
rw [← mul_sub, ← mul_sub, mul_smul_comm, mul_smul_comm, ← smul_mul_assoc,
← smul_mul_assoc]
rw [← sub_mul]
have h1 : (ι (ofCrAnList [φ, ψ]) -
(exchangeSign (𝓕.crAnStatistics φ)) (𝓕.crAnStatistics ψ) • ι (ofCrAnList [ψ, φ])) =
ι [ofCrAnState φ, ofCrAnState ψ]ₛca := by
rw [superCommuteF_ofCrAnState_ofCrAnState]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append]
simp only [instCommGroup.eq_1, List.singleton_append, Algebra.smul_mul_assoc, map_sub,
map_smul]
rw [← ofCrAnList_append]
simp
rw [h1]
have hc : ι ((superCommuteF (ofCrAnState φ)) (ofCrAnState ψ)) ∈
Subalgebra.center 𝓕.FieldOpAlgebra := by
apply ι_superCommuteF_ofCrAnState_ofCrAnState_mem_center
rw [Subalgebra.mem_center_iff] at hc
repeat rw [← mul_assoc]
rw [hc]
repeat rw [mul_assoc]
rw [smul_mul_assoc]
rw [← map_mul, ← map_mul, ← map_mul, ← map_mul]
rw [← ofCrAnList_append, ← ofCrAnList_append, ← ofCrAnList_append, ← ofCrAnList_append]
have h1 := insertionSort_of_takeWhile_filter 𝓕.crAnTimeOrderRel φ φs' φs
simp only [decide_not, Bool.decide_and, List.append_assoc, List.cons_append,
List.singleton_append, Algebra.mul_smul_comm, map_mul] at h1 ⊢
rw [← h1]
rw [← crAnTimeOrderList]
by_cases hq : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)
· rw [ι_superCommuteF_of_diff_statistic hq]
simp
· rw [crAnTimeOrderSign, Wick.koszulSign_eq_rel_eq_stat _ _, ← crAnTimeOrderSign]
rw [timeOrderF_ofCrAnList]
simp only [map_smul, Algebra.mul_smul_comm]
simp only [List.nil_append]
exact hψφ
exact hφψ
simpa using hq
· simp only [map_mul, zero_mul, map_zero, mul_zero, pa]
· intro x y hx hy hpx hpy
simp_all [pa,mul_add, add_mul]
· intro x hx hpx
simp_all [pa, hpx]
· simp only [map_mul, mul_zero, map_zero, pb]
· intro x y hx hy hpx hpy
simp_all [pb,mul_add, add_mul]
· intro x hx hpx
simp_all [pb, hpx]
lemma ι_timeOrderF_superCommuteF_neq_time {φ ψ : 𝓕.CrAnStates}
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) (a b : 𝓕.CrAnAlgebra) :
ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) = 0 := by
rw [timeOrderF_timeOrderF_mid]
have hφψ : ¬ (crAnTimeOrderRel φ ψ) ¬ (crAnTimeOrderRel ψ φ) := by
exact Decidable.not_and_iff_or_not.mp hφψ
rcases hφψ with hφψ | hφψ
· rw [timeOrderF_superCommuteF_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
simp_all only [false_and, not_false_eq_true, false_or, mul_zero, zero_mul, map_zero]
simp_all
· rw [superCommuteF_ofCrAnState_ofCrAnState_symm]
simp only [instCommGroup.eq_1, neg_smul, map_neg, map_smul, mul_neg, Algebra.mul_smul_comm,
neg_mul, Algebra.smul_mul_assoc, neg_eq_zero, smul_eq_zero]
rw [timeOrderF_superCommuteF_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
simp only [mul_zero, zero_mul, map_zero, or_true]
simp_all
/-!
## Defining time order for `FiedOpAlgebra`.
-/
lemma ι_timeOrderF_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓣ᶠ(a) = 0 := by
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓣ᶠ(a) = 0
change p a h
apply AddSubgroup.closure_induction
· intro x hx
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
obtain ⟨a, ha, c, hc, rfl⟩ := ha
simp only [p]
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq] at hc
match hc with
| Or.inl hc =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp only [ι_timeOrderF_superCommuteF_superCommuteF]
| Or.inr (Or.inl hc) =>
obtain ⟨φa, hφa, φb, hφb, rfl⟩ := hc
by_cases heqt : (crAnTimeOrderRel φa φb ∧ crAnTimeOrderRel φb φa)
· rw [ι_timeOrderF_superCommuteF_eq_time]
simp only [map_mul]
rw [ι_superCommuteF_of_create_create]
simp only [zero_mul]
· exact hφa
· exact hφb
· exact heqt.1
· exact heqt.2
· rw [ι_timeOrderF_superCommuteF_neq_time heqt]
| Or.inr (Or.inr (Or.inl hc)) =>
obtain ⟨φa, hφa, φb, hφb, rfl⟩ := hc
by_cases heqt : (crAnTimeOrderRel φa φb ∧ crAnTimeOrderRel φb φa)
· rw [ι_timeOrderF_superCommuteF_eq_time]
simp only [map_mul]
rw [ι_superCommuteF_of_annihilate_annihilate]
simp only [zero_mul]
· exact hφa
· exact hφb
· exact heqt.1
· exact heqt.2
· rw [ι_timeOrderF_superCommuteF_neq_time heqt]
| Or.inr (Or.inr (Or.inr hc)) =>
obtain ⟨φa, φb, hdiff, rfl⟩ := hc
by_cases heqt : (crAnTimeOrderRel φa φb ∧ crAnTimeOrderRel φb φa)
· rw [ι_timeOrderF_superCommuteF_eq_time]
simp only [map_mul]
rw [ι_superCommuteF_of_diff_statistic]
simp only [zero_mul]
· exact hdiff
· exact heqt.1
· exact heqt.2
· rw [ι_timeOrderF_superCommuteF_neq_time heqt]
· simp [p]
· intro x y hx hy
simp only [map_add, p]
intro h1 h2
simp [h1, h2]
· intro x hx
simp [p]
lemma ι_timeOrderF_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
ι 𝓣ᶠ(a) = ι 𝓣ᶠ(b) := by
rw [equiv_iff_sub_mem_ideal] at h
rw [LinearMap.sub_mem_ker_iff.mp]
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_timeOrderF_zero_of_mem_ideal (a - b) h
/-- Time ordering on `FieldOpAlgebra`. -/
noncomputable def timeOrder : FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ timeOrderF) ι_timeOrderF_eq_of_equiv
map_add' x y := by
obtain ⟨x, hx⟩ := ι_surjective x
obtain ⟨y, hy⟩ := ι_surjective y
subst hx hy
rw [← map_add, ι_apply, ι_apply, ι_apply]
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
simp
map_smul' c y := by
obtain ⟨y, hy⟩ := ι_surjective y
subst hy
rw [← map_smul, ι_apply, ι_apply]
simp
@[inherit_doc timeOrder]
scoped[FieldSpecification.FieldOpAlgebra] notation "𝓣(" a ")" => timeOrder a
/-!
## Properties of time ordering
-/
lemma timeOrder_eq_ι_timeOrderF (a : 𝓕.CrAnAlgebra) :
𝓣(ι a) = ι 𝓣ᶠ(a) := rfl
lemma timeOrder_ofFieldOp_ofFieldOp_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
𝓣(ofFieldOp φ * ofFieldOp ψ) = ofFieldOp φ * ofFieldOp ψ := by
rw [ofFieldOp, ofFieldOp, ← map_mul, timeOrder_eq_ι_timeOrderF,
timeOrderF_ofState_ofState_ordered h]
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
𝓣(ofFieldOp φ * ofFieldOp ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • ofFieldOp ψ * ofFieldOp φ := by
rw [ofFieldOp, ofFieldOp, ← map_mul, timeOrder_eq_ι_timeOrderF,
timeOrderF_ofState_ofState_not_ordered h]
simp
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered_eq_timeOrder {φ ψ : 𝓕.States}
(h : ¬ timeOrderRel φ ψ) :
𝓣(ofFieldOp φ * ofFieldOp ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • 𝓣(ofFieldOp ψ * ofFieldOp φ) := by
rw [ofFieldOp, ofFieldOp, ← map_mul, timeOrder_eq_ι_timeOrderF,
timeOrderF_ofState_ofState_not_ordered_eq_timeOrderF h]
simp only [instCommGroup.eq_1, map_smul]
rfl
lemma timeOrder_ofFieldOpList_nil : 𝓣(ofFieldOpList (𝓕 := 𝓕) []) = 1 := by
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofStateList_nil]
simp
@[simp]
lemma timeOrder_ofFieldOpList_singleton (φ : 𝓕.States) :
𝓣(ofFieldOpList [φ]) = ofFieldOpList [φ] := by
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofStateList_singleton]
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.States) :
𝓣(ofFieldOpList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
(Finset.filter (fun x =>
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) •
ofFieldOp (maxTimeField φ φs) * 𝓣(ofFieldOpList (eraseMaxTimeField φ φs)) := by
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_eq_maxTimeField_mul_finset]
rfl
lemma timeOrder_superCommute_eq_time_mid {φ ψ : 𝓕.CrAnStates}
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (a b : 𝓕.FieldOpAlgebra) :
𝓣(a * [ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b) =
[ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * 𝓣(a * b) := by
rw [ofCrAnFieldOp, ofCrAnFieldOp]
rw [superCommute_eq_ι_superCommuteF]
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
rw [← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF]
rw [ι_timeOrderF_superCommuteF_eq_time]
rfl
· simp_all
· simp_all
lemma timeOrder_superCommute_eq_time_left {φ ψ : 𝓕.CrAnStates}
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (b : 𝓕.FieldOpAlgebra) :
𝓣([ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b) =
[ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * 𝓣(b) := by
trans 𝓣(1 * [ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b)
simp only [one_mul]
rw [timeOrder_superCommute_eq_time_mid hφψ hψφ]
simp
lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnStates}
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) :
𝓣([ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ) = 0 := by
rw [ofCrAnFieldOp, ofCrAnFieldOp]
rw [superCommute_eq_ι_superCommuteF]
rw [timeOrder_eq_ι_timeOrderF]
trans ι (timeOrderF (1 * (superCommuteF (ofCrAnState φ)) (ofCrAnState ψ) * 1))
simp only [one_mul, mul_one]
rw [ι_timeOrderF_superCommuteF_neq_time]
exact hφψ
lemma timeOrder_superCommute_anPart_ofFieldOp_neq_time {φ ψ : 𝓕.States}
(hφψ : ¬ (timeOrderRel φ ψ ∧ timeOrderRel ψ φ)) :
𝓣([anPart φ,ofFieldOp ψ]ₛ) = 0 := by
rw [ofFieldOp_eq_sum]
simp only [map_sum]
apply Finset.sum_eq_zero
intro a ha
match φ with
| .inAsymp φ =>
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1]
apply timeOrder_superCommute_neq_time
simp_all [crAnTimeOrderRel]
| .outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1]
apply timeOrder_superCommute_neq_time
simp_all [crAnTimeOrderRel]
lemma timeOrder_timeOrder_mid (a b c : 𝓕.FieldOpAlgebra) :
𝓣(a * b * c) = 𝓣(a * 𝓣(b) * c) := by
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
obtain ⟨c, rfl⟩ := ι_surjective c
rw [← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF, timeOrder_eq_ι_timeOrderF,
← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF, timeOrderF_timeOrderF_mid]
lemma timeOrder_timeOrder_left (b c : 𝓕.FieldOpAlgebra) :
𝓣(b * c) = 𝓣(𝓣(b) * c) := by
trans 𝓣(1 * b * c)
simp only [one_mul]
rw [timeOrder_timeOrder_mid]
simp
lemma timeOrder_timeOrder_right (a b : 𝓕.FieldOpAlgebra) :
𝓣(a * b) = 𝓣(a * 𝓣(b)) := by
trans 𝓣(a * b * 1)
simp only [mul_one]
rw [timeOrder_timeOrder_mid]
simp
end FieldOpAlgebra
end FieldSpecification