PhysLean/HepLean/PerturbationTheory/WickContraction/StaticContract.lean
2025-02-10 10:21:57 +00:00

124 lines
5.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.Sign.Basic
import HepLean.PerturbationTheory.FieldOpAlgebra.TimeContraction
/-!
# Time contractions
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open FieldOpAlgebra
/-- For a list `φs` of `𝓕.FieldOp` and a Wick contraction `φsΛ`, the
element of the center of `𝓕.FieldOpAlgebra`, `φsΛ.staticContract` is defined as the product
of `[anPart φs[j], φs[k]]ₛ` over contracted pairs `{j, k}` in `φsΛ`
with `j < k`. -/
noncomputable def staticContract {φs : List 𝓕.FieldOp}
(φsΛ : WickContraction φs.length) :
Subalgebra.center 𝓕.FieldOpAlgebra :=
∏ (a : φsΛ.1), ⟨[anPart (φs.get (φsΛ.fstFieldOfContract a)),
ofFieldOp (φs.get (φsΛ.sndFieldOfContract a))]ₛ,
superCommute_anPart_ofFieldOp_mem_center _ _⟩
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, and a `i ≤ φs.length`, then the following relation holds:
`(φsΛ ↩Λ φ i none).staticContract = φsΛ.staticContract`
The prove of this result ultimately a consequence of definitions.
-/
@[simp]
lemma staticContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) :
(φsΛ ↩Λ φ i none).staticContract = φsΛ.staticContract := by
rw [staticContract, insertAndContract_none_prod_contractions]
congr
ext a
simp
/--
For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, a `i ≤ φs.length` and a `k` in `φsΛ.uncontracted`, then
`(φsΛ ↩Λ φ i (some k)).staticContract` is equal to the product of
- `[anPart φ, φs[k]]ₛ` if `i ≤ k` or `[anPart φs[k], φ]ₛ` if `k < i`
- `φsΛ.staticContract`.
The proof of this result ultimately a consequence of definitions.
-/
lemma staticContract_insert_some
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
(φsΛ ↩Λ φ i (some j)).staticContract =
(if i < i.succAbove j then
⟨[anPart φ, ofFieldOp φs[j.1]]ₛ, superCommute_anPart_ofFieldOp_mem_center _ _⟩
else ⟨[anPart φs[j.1], ofFieldOp φ]ₛ, superCommute_anPart_ofFieldOp_mem_center _ _⟩) *
φsΛ.staticContract := by
rw [staticContract, insertAndContract_some_prod_contractions]
congr 1
· simp only [Nat.succ_eq_add_one, insertAndContract_fstFieldOfContract_some_incl, finCongr_apply,
List.get_eq_getElem, insertAndContract_sndFieldOfContract_some_incl, Fin.getElem_fin]
split
· simp
· simp
· congr
ext a
simp
open FieldStatistic
lemma staticContract_insert_some_of_lt
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
(hik : i < i.succAbove k) :
(φsΛ ↩Λ φ i (some k)).staticContract =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x < k))⟩)
• (contractStateAtIndex φ [φsΛ]ᵘᶜ ((uncontractedFieldOpEquiv φs φsΛ) (some k)) *
φsΛ.staticContract) := by
rw [staticContract_insert_some]
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1,
contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem,
Algebra.smul_mul_assoc, uncontractedListGet]
· simp only [hik, ↓reduceIte, MulMemClass.coe_mul]
trans (1 : ) • ((superCommute (anPart φ)) (ofFieldOp φs[k.1]) * ↑φsΛ.staticContract)
· simp
simp only [smul_smul]
congr 1
have h1 : ofList 𝓕.fieldOpStatistic (List.take (↑(φsΛ.uncontractedIndexEquiv.symm k))
(List.map φs.get φsΛ.uncontractedList))
= (𝓕 |>ₛ ⟨φs.get, (Finset.filter (fun x => x < k) φsΛ.uncontracted)⟩) := by
simp only [ofFinset]
congr
rw [← List.map_take]
congr
rw [take_uncontractedIndexEquiv_symm]
rw [filter_uncontractedList]
rw [h1]
simp only [exchangeSign_mul_self]
lemma staticContract_of_not_gradingCompliant (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (h : ¬ GradingCompliant φs φsΛ) :
φsΛ.staticContract = 0 := by
rw [staticContract]
simp only [GradingCompliant, Fin.getElem_fin, Subtype.forall, not_forall] at h
obtain ⟨a, ha⟩ := h
obtain ⟨ha, ha2⟩ := ha
apply Finset.prod_eq_zero (i := ⟨a, ha⟩)
simp only [Finset.univ_eq_attach, Finset.mem_attach]
apply Subtype.eq
simp only [List.get_eq_getElem, ZeroMemClass.coe_zero]
rw [superCommute_anPart_ofFieldOpF_diff_grade_zero]
simp [ha2]
end WickContraction