PhysLean/HepLean/PerturbationTheory/WickContraction/Uncontracted.lean
2025-02-07 06:58:41 +00:00

108 lines
3.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.Basic
/-!
# Uncontracted elements
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
/-- For a Wick contraction `c`, `c.uncontracted` is defined as the finset of elements of `Fin n`
which are not in any contracted pair. -/
def uncontracted : Finset (Fin n) := Finset.filter (fun i => c.getDual? i = none) (Finset.univ)
lemma congr_uncontracted {n m : } (c : WickContraction n) (h : n = m) :
(c.congr h).uncontracted = Finset.map (finCongr h).toEmbedding c.uncontracted := by
subst h
simp
lemma getDual?_eq_none_iff_mem_uncontracted (i : Fin n) :
c.getDual? i = none ↔ i ∈ c.uncontracted := by
simp [uncontracted]
/-- The equivalence of `Option c.uncontracted` for two propositionally equal Wick contractions. -/
def uncontractedCongr {c c': WickContraction n} (h : c = c') :
Option c.uncontracted ≃ Option c'.uncontracted :=
Equiv.optionCongr (Equiv.subtypeEquivRight (by rw [h]; simp))
@[simp]
lemma uncontractedCongr_none {c c': WickContraction n} (h : c = c') :
(uncontractedCongr h) none = none := by
simp [uncontractedCongr]
@[simp]
lemma uncontractedCongr_some {c c': WickContraction n} (h : c = c') (i : c.uncontracted) :
(uncontractedCongr h) (some i) = some (Equiv.subtypeEquivRight (by rw [h]; simp) i) := by
simp [uncontractedCongr]
lemma mem_uncontracted_iff_not_contracted (i : Fin n) :
i ∈ c.uncontracted ↔ ∀ p ∈ c.1, i ∉ p := by
simp only [uncontracted, getDual?, Finset.mem_filter, Finset.mem_univ, true_and]
apply Iff.intro
· intro h p hp
have hp := c.2.1 p hp
rw [Finset.card_eq_two] at hp
obtain ⟨a, b, ha, hb, hab⟩ := hp
rw [Fin.find_eq_none_iff] at h
by_contra hn
simp only [Finset.mem_insert, Finset.mem_singleton] at hn
rcases hn with hn | hn
· subst hn
exact h b hp
· subst hn
rw [Finset.pair_comm] at hp
exact h a hp
· intro h
rw [Fin.find_eq_none_iff]
by_contra hn
simp only [not_forall, Decidable.not_not] at hn
obtain ⟨j, hj⟩ := hn
apply h {i, j} hj
simp
lemma mem_uncontracted_empty (i : Fin n) : i ∈ empty.uncontracted := by
rw [@mem_uncontracted_iff_not_contracted]
intro p hp
simp [empty] at hp
@[simp]
lemma getDual?_empty_eq_none (i : Fin n) : empty.getDual? i = none := by
simpa [uncontracted] using mem_uncontracted_empty i
@[simp]
lemma uncontracted_empty {n : } : (@empty n).uncontracted = Finset.univ := by
simp [uncontracted]
lemma uncontracted_card_le (c : WickContraction n) : c.uncontracted.card ≤ n := by
simp only [uncontracted]
apply le_of_le_of_eq (Finset.card_filter_le _ _)
simp
lemma uncontracted_card_eq_iff (c : WickContraction n) :
c.uncontracted.card = n ↔ c = empty := by
apply Iff.intro
· intro h
have hc : c.uncontracted.card = (Finset.univ (α := Fin n)).card := by simpa using h
simp only [uncontracted] at hc
rw [Finset.card_filter_eq_iff] at hc
by_contra hn
have hc' := exists_pair_of_not_eq_empty c hn
obtain ⟨i, j, hij⟩ := hc'
have hci : c.getDual? i = some j := by
rw [@getDual?_eq_some_iff_mem]
exact hij
simp_all
· intro h
subst h
simp
end WickContraction