PhysLean/HepLean/FlavorPhysics/CKMMatrix/Jarlskog.lean
2024-04-26 14:52:56 -04:00

176 lines
7.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.FlavorPhysics.CKMMatrix.Basic
import HepLean.FlavorPhysics.CKMMatrix.Rows
import HepLean.FlavorPhysics.CKMMatrix.PhaseFreedom
import HepLean.FlavorPhysics.CKMMatrix.Ratios
import HepLean.FlavorPhysics.CKMMatrix.StandardParameters
import Mathlib.Analysis.SpecialFunctions.Complex.Arg
open Matrix Complex
open ComplexConjugate
open CKMMatrix
noncomputable section
@[simps!]
def jarlskogComplexCKM (V : CKMMatrix) : :=
[V]us * [V]cb * conj [V]ub * conj [V]cs
lemma jarlskogComplexCKM_equiv (V U : CKMMatrix) (h : V ≈ U) :
jarlskogComplexCKM V = jarlskogComplexCKM U := by
obtain ⟨a, b, c, e, f, g, h⟩ := h
change V = phaseShiftApply U a b c e f g at h
rw [h]
simp only [jarlskogComplexCKM, Fin.isValue, phaseShiftApply.ub,
phaseShiftApply.us, phaseShiftApply.cb, phaseShiftApply.cs]
simp [← exp_conj, conj_ofReal, exp_add, exp_neg]
have ha : cexp (↑a * I) ≠ 0 := exp_ne_zero _
have hb : cexp (↑b * I) ≠ 0 := exp_ne_zero _
have hf : cexp (↑f * I) ≠ 0 := exp_ne_zero _
have hg : cexp (↑g * I) ≠ 0 := exp_ne_zero _
field_simp
ring
def inv₁ (V : Quotient CKMMatrixSetoid) : :=
VusAbs V ^ 2 * VubAbs V ^ 2 * VcbAbs V ^2 /(VudAbs V ^ 2 + VusAbs V ^2)
lemma inv₁_sP (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) (h1 : 0 ≤ Real.sin θ₁₂)
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
inv₁ ⟦sP θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
Real.sin θ₁₂ ^ 2 * Real.cos θ₁₃ ^ 2 * Real.sin θ₁₃ ^ 2 * Real.sin θ₂₃ ^ 2 := by
simp only [inv₁, VusAbs, VAbs, VAbs', Fin.isValue, sP, standardParameterizationAsMatrix,
neg_mul, Quotient.lift_mk, cons_val', cons_val_one, head_cons,
empty_val', cons_val_fin_one, cons_val_zero, _root_.map_mul, VubAbs, cons_val_two, tail_cons,
VcbAbs, VudAbs, Complex.abs_ofReal]
by_cases hx : Real.cos θ₁₃ ≠ 0
·
rw [Complex.abs_exp]
simp
rw [_root_.abs_of_nonneg h1, _root_.abs_of_nonneg h3, _root_.abs_of_nonneg h2,
_root_.abs_of_nonneg h4]
simp [sq]
ring_nf
nth_rewrite 2 [Real.sin_sq θ₁₂]
ring_nf
field_simp
ring
· simp at hx
rw [hx]
simp
@[simp]
def jarlskogComplex : Quotient CKMMatrixSetoid → :=
Quotient.lift jarlskogComplexCKM jarlskogComplexCKM_equiv
-- bad name
def expδ₁₃ (V : Quotient CKMMatrixSetoid) : :=
jarlskogComplex V + inv₁ V
lemma expδ₁₃_sP (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) (h1 : 0 ≤ Real.sin θ₁₂)
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
expδ₁₃ ⟦sP θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
sin θ₁₂ * cos θ₁₃ ^ 2 * sin θ₂₃ * sin θ₁₃ * cos θ₁₂ * cos θ₂₃ * cexp (I * δ₁₃) := by
rw [expδ₁₃]
rw [inv₁_sP _ _ _ _ h1 h2 h3 h4 ]
simp only [expδ₁₃, jarlskogComplex, sP, standardParameterizationAsMatrix, neg_mul,
Quotient.lift_mk, jarlskogComplexCKM, Fin.isValue, cons_val', cons_val_one, head_cons,
empty_val', cons_val_fin_one, cons_val_zero, cons_val_two, tail_cons, _root_.map_mul, ←
exp_conj, map_neg, conj_I, conj_ofReal, neg_neg, map_sub]
simp
ring_nf
rw [exp_neg]
have h1 : cexp (I * δ₁₃) ≠ 0 := exp_ne_zero _
field_simp
lemma expδ₁₃_sP_V (V : CKMMatrix) (δ₁₃ : ) :
expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
refine expδ₁₃_sP _ _ _ _ ?_ ?_ ?_ ?_
rw [S₁₂_eq_sin_θ₁₂]
exact S₁₂_nonneg _
exact Real.cos_arcsin_nonneg _
rw [S₂₃_eq_sin_θ₂₃]
exact S₂₃_nonneg _
exact Real.cos_arcsin_nonneg _
lemma expδ₁₃_eq_zero (V : CKMMatrix) (δ₁₃ : ) :
expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
VudAbs ⟦V⟧ = 0 VubAbs ⟦V⟧ = 0 VusAbs ⟦V⟧ = 0 VcbAbs ⟦V⟧ = 0 VtbAbs ⟦V⟧ = 0 := by
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃, VtbAbs_eq_C₂₃_mul_C₁₃,
← ofReal_inj,
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
simp only [ofReal_mul]
rw [← S₁₃_eq_sin_θ₁₃, ← S₁₂_eq_sin_θ₁₂, ← S₂₃_eq_sin_θ₂₃,
← C₁₃_eq_cos_θ₁₃, ← C₂₃_eq_cos_θ₂₃,← C₁₂_eq_cos_θ₁₂]
simp
rw [expδ₁₃_sP_V]
simp
have h1 := exp_ne_zero (I * δ₁₃)
simp_all
aesop
lemma inv₂_V_arg (V : CKMMatrix) (δ₁₃ : )
(h1 : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
cexp (arg (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * I) =
cexp (δ₁₃ * I) := by
have h1a := expδ₁₃_sP_V V δ₁₃
have habs : Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) := by
rw [h1a]
simp [abs_exp]
rw [complexAbs_sin_θ₁₃, complexAbs_cos_θ₁₃, complexAbs_sin_θ₁₂, complexAbs_cos_θ₁₂,
complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃]
have h2 : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
rw [habs, h1a]
ring_nf
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
have habs_neq_zero : (Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ) ≠ 0 := by
simp
exact h1
rw [← mul_right_inj' habs_neq_zero]
rw [← h2]
def δ₁₃ (V : Quotient CKMMatrixSetoid) : := arg (expδ₁₃ V)
theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
V ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (δ₁₃ ⟦V⟧) := by
obtain ⟨δ₁₃', hδ₃⟩ := exists_standardParameterization V
have hSV := (Quotient.eq.mpr (hδ₃))
by_cases h : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
have h1 := inv₂_V_arg V δ₁₃' h
have h2 := eq_phases_sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
(δ₁₃ ⟦V⟧) (by rw [← h1, ← hSV, δ₁₃])
rw [h2] at hδ₃
exact hδ₃
simp at h
have h1 : δ₁₃ ⟦V⟧ = 0 := by
rw [hSV, δ₁₃, h]
simp
rw [h1]
rw [expδ₁₃_eq_zero, Vs_zero_iff_cos_sin_zero] at h
cases' h with h h
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₁₂_eq_zero δ₁₃' h )
cases' h with h h
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₁₃_eq_zero δ₁₃' h )
cases' h with h h
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₂₃_eq_zero δ₁₃' h )
cases' h with h h
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₁₂_eq_zero δ₁₃' h )
cases' h with h h
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₁₃_eq_zero δ₁₃' h )
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₂₃_eq_zero δ₁₃' h )
end