176 lines
7.6 KiB
Text
176 lines
7.6 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.FlavorPhysics.CKMMatrix.Basic
|
||
import HepLean.FlavorPhysics.CKMMatrix.Rows
|
||
import HepLean.FlavorPhysics.CKMMatrix.PhaseFreedom
|
||
import HepLean.FlavorPhysics.CKMMatrix.Ratios
|
||
import HepLean.FlavorPhysics.CKMMatrix.StandardParameters
|
||
import Mathlib.Analysis.SpecialFunctions.Complex.Arg
|
||
|
||
open Matrix Complex
|
||
open ComplexConjugate
|
||
open CKMMatrix
|
||
|
||
|
||
noncomputable section
|
||
|
||
@[simps!]
|
||
def jarlskogComplexCKM (V : CKMMatrix) : ℂ :=
|
||
[V]us * [V]cb * conj [V]ub * conj [V]cs
|
||
|
||
lemma jarlskogComplexCKM_equiv (V U : CKMMatrix) (h : V ≈ U) :
|
||
jarlskogComplexCKM V = jarlskogComplexCKM U := by
|
||
obtain ⟨a, b, c, e, f, g, h⟩ := h
|
||
change V = phaseShiftApply U a b c e f g at h
|
||
rw [h]
|
||
simp only [jarlskogComplexCKM, Fin.isValue, phaseShiftApply.ub,
|
||
phaseShiftApply.us, phaseShiftApply.cb, phaseShiftApply.cs]
|
||
simp [← exp_conj, conj_ofReal, exp_add, exp_neg]
|
||
have ha : cexp (↑a * I) ≠ 0 := exp_ne_zero _
|
||
have hb : cexp (↑b * I) ≠ 0 := exp_ne_zero _
|
||
have hf : cexp (↑f * I) ≠ 0 := exp_ne_zero _
|
||
have hg : cexp (↑g * I) ≠ 0 := exp_ne_zero _
|
||
field_simp
|
||
ring
|
||
|
||
def inv₁ (V : Quotient CKMMatrixSetoid) : ℝ :=
|
||
VusAbs V ^ 2 * VubAbs V ^ 2 * VcbAbs V ^2 /(VudAbs V ^ 2 + VusAbs V ^2)
|
||
|
||
lemma inv₁_sP (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) (h1 : 0 ≤ Real.sin θ₁₂)
|
||
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
|
||
inv₁ ⟦sP θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
|
||
Real.sin θ₁₂ ^ 2 * Real.cos θ₁₃ ^ 2 * Real.sin θ₁₃ ^ 2 * Real.sin θ₂₃ ^ 2 := by
|
||
simp only [inv₁, VusAbs, VAbs, VAbs', Fin.isValue, sP, standardParameterizationAsMatrix,
|
||
neg_mul, Quotient.lift_mk, cons_val', cons_val_one, head_cons,
|
||
empty_val', cons_val_fin_one, cons_val_zero, _root_.map_mul, VubAbs, cons_val_two, tail_cons,
|
||
VcbAbs, VudAbs, Complex.abs_ofReal]
|
||
by_cases hx : Real.cos θ₁₃ ≠ 0
|
||
·
|
||
rw [Complex.abs_exp]
|
||
simp
|
||
rw [_root_.abs_of_nonneg h1, _root_.abs_of_nonneg h3, _root_.abs_of_nonneg h2,
|
||
_root_.abs_of_nonneg h4]
|
||
simp [sq]
|
||
ring_nf
|
||
nth_rewrite 2 [Real.sin_sq θ₁₂]
|
||
ring_nf
|
||
field_simp
|
||
ring
|
||
· simp at hx
|
||
rw [hx]
|
||
simp
|
||
|
||
|
||
|
||
@[simp]
|
||
def jarlskogComplex : Quotient CKMMatrixSetoid → ℂ :=
|
||
Quotient.lift jarlskogComplexCKM jarlskogComplexCKM_equiv
|
||
|
||
-- bad name
|
||
def expδ₁₃ (V : Quotient CKMMatrixSetoid) : ℂ :=
|
||
jarlskogComplex V + inv₁ V
|
||
|
||
lemma expδ₁₃_sP (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) (h1 : 0 ≤ Real.sin θ₁₂)
|
||
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
|
||
expδ₁₃ ⟦sP θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
|
||
sin θ₁₂ * cos θ₁₃ ^ 2 * sin θ₂₃ * sin θ₁₃ * cos θ₁₂ * cos θ₂₃ * cexp (I * δ₁₃) := by
|
||
rw [expδ₁₃]
|
||
rw [inv₁_sP _ _ _ _ h1 h2 h3 h4 ]
|
||
simp only [expδ₁₃, jarlskogComplex, sP, standardParameterizationAsMatrix, neg_mul,
|
||
Quotient.lift_mk, jarlskogComplexCKM, Fin.isValue, cons_val', cons_val_one, head_cons,
|
||
empty_val', cons_val_fin_one, cons_val_zero, cons_val_two, tail_cons, _root_.map_mul, ←
|
||
exp_conj, map_neg, conj_I, conj_ofReal, neg_neg, map_sub]
|
||
simp
|
||
ring_nf
|
||
rw [exp_neg]
|
||
have h1 : cexp (I * δ₁₃) ≠ 0 := exp_ne_zero _
|
||
field_simp
|
||
|
||
|
||
lemma expδ₁₃_sP_V (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||
expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
|
||
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
||
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
|
||
refine expδ₁₃_sP _ _ _ _ ?_ ?_ ?_ ?_
|
||
rw [S₁₂_eq_sin_θ₁₂]
|
||
exact S₁₂_nonneg _
|
||
exact Real.cos_arcsin_nonneg _
|
||
rw [S₂₃_eq_sin_θ₂₃]
|
||
exact S₂₃_nonneg _
|
||
exact Real.cos_arcsin_nonneg _
|
||
|
||
|
||
lemma expδ₁₃_eq_zero (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||
expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
|
||
VudAbs ⟦V⟧ = 0 ∨ VubAbs ⟦V⟧ = 0 ∨ VusAbs ⟦V⟧ = 0 ∨ VcbAbs ⟦V⟧ = 0 ∨ VtbAbs ⟦V⟧ = 0 := by
|
||
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃, VtbAbs_eq_C₂₃_mul_C₁₃,
|
||
← ofReal_inj,
|
||
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
|
||
simp only [ofReal_mul]
|
||
rw [← S₁₃_eq_ℂsin_θ₁₃, ← S₁₂_eq_ℂsin_θ₁₂, ← S₂₃_eq_ℂsin_θ₂₃,
|
||
← C₁₃_eq_ℂcos_θ₁₃, ← C₂₃_eq_ℂcos_θ₂₃,← C₁₂_eq_ℂcos_θ₁₂]
|
||
simp
|
||
rw [expδ₁₃_sP_V]
|
||
simp
|
||
have h1 := exp_ne_zero (I * δ₁₃)
|
||
simp_all
|
||
aesop
|
||
|
||
lemma inv₂_V_arg (V : CKMMatrix) (δ₁₃ : ℝ)
|
||
(h1 : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
|
||
cexp (arg (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * I) =
|
||
cexp (δ₁₃ * I) := by
|
||
have h1a := expδ₁₃_sP_V V δ₁₃
|
||
have habs : Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
|
||
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
||
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) := by
|
||
rw [h1a]
|
||
simp [abs_exp]
|
||
rw [complexAbs_sin_θ₁₃, complexAbs_cos_θ₁₃, complexAbs_sin_θ₁₂, complexAbs_cos_θ₁₂,
|
||
complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃]
|
||
have h2 : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
|
||
Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
|
||
rw [habs, h1a]
|
||
ring_nf
|
||
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
|
||
have habs_neq_zero : (Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ℂ) ≠ 0 := by
|
||
simp
|
||
exact h1
|
||
rw [← mul_right_inj' habs_neq_zero]
|
||
rw [← h2]
|
||
|
||
def δ₁₃ (V : Quotient CKMMatrixSetoid) : ℝ := arg (expδ₁₃ V)
|
||
|
||
theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
|
||
V ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (δ₁₃ ⟦V⟧) := by
|
||
obtain ⟨δ₁₃', hδ₃⟩ := exists_standardParameterization V
|
||
have hSV := (Quotient.eq.mpr (hδ₃))
|
||
by_cases h : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
|
||
have h1 := inv₂_V_arg V δ₁₃' h
|
||
have h2 := eq_phases_sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
|
||
(δ₁₃ ⟦V⟧) (by rw [← h1, ← hSV, δ₁₃])
|
||
rw [h2] at hδ₃
|
||
exact hδ₃
|
||
simp at h
|
||
have h1 : δ₁₃ ⟦V⟧ = 0 := by
|
||
rw [hSV, δ₁₃, h]
|
||
simp
|
||
rw [h1]
|
||
rw [expδ₁₃_eq_zero, Vs_zero_iff_cos_sin_zero] at h
|
||
cases' h with h h
|
||
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₁₂_eq_zero δ₁₃' h )
|
||
cases' h with h h
|
||
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₁₃_eq_zero δ₁₃' h )
|
||
cases' h with h h
|
||
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₂₃_eq_zero δ₁₃' h )
|
||
cases' h with h h
|
||
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₁₂_eq_zero δ₁₃' h )
|
||
cases' h with h h
|
||
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₁₃_eq_zero δ₁₃' h )
|
||
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₂₃_eq_zero δ₁₃' h )
|
||
|
||
|
||
end
|