182 lines
7.1 KiB
Text
182 lines
7.1 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.Wick.OperatorMap
|
||
/-!
|
||
|
||
# Koszul signs and ordering for lists and algebras
|
||
|
||
-/
|
||
|
||
namespace Wick
|
||
|
||
open HepLean.List
|
||
open FieldStatistic
|
||
|
||
variable {𝓕 : Type}
|
||
|
||
/-- Given a list of fields `l`, the type of pairwise-contractions associated with `l`
|
||
which have the list `aux` uncontracted. -/
|
||
inductive ContractionsAux : (l : List 𝓕) → (aux : List 𝓕) → Type
|
||
| nil : ContractionsAux [] []
|
||
| cons {l : List 𝓕} {aux : List 𝓕} {a : 𝓕} (i : Option (Fin aux.length)) :
|
||
ContractionsAux l aux → ContractionsAux (a :: l) (optionEraseZ aux a i)
|
||
|
||
/-- Given a list of fields `l`, the type of pairwise-contractions associated with `l`. -/
|
||
def Contractions (l : List 𝓕) : Type := Σ aux, ContractionsAux l aux
|
||
|
||
namespace Contractions
|
||
|
||
variable {l : List 𝓕} (c : Contractions l)
|
||
|
||
/-- The list of uncontracted fields. -/
|
||
def normalize : List 𝓕 := c.1
|
||
|
||
lemma contractions_nil (a : Contractions ([] : List 𝓕)) : a = ⟨[], ContractionsAux.nil⟩ := by
|
||
cases a
|
||
rename_i aux c
|
||
cases c
|
||
rfl
|
||
|
||
lemma contractions_single {i : 𝓕} (a : Contractions [i]) : a =
|
||
⟨[i], ContractionsAux.cons none ContractionsAux.nil⟩ := by
|
||
cases a
|
||
rename_i aux c
|
||
cases c
|
||
rename_i aux' c'
|
||
cases c'
|
||
cases aux'
|
||
simp only [List.length_nil, optionEraseZ]
|
||
rename_i x
|
||
exact Fin.elim0 x
|
||
|
||
/-- For the nil list of fields there is only one contraction. -/
|
||
def nilEquiv : Contractions ([] : List 𝓕) ≃ Unit where
|
||
toFun _ := ()
|
||
invFun _ := ⟨[], ContractionsAux.nil⟩
|
||
left_inv a := Eq.symm (contractions_nil a)
|
||
right_inv _ := rfl
|
||
|
||
/-- The equivalence between contractions of `a :: l` and contractions of
|
||
`Contractions l` paired with an optional element of `Fin (c.normalize).length` specifying
|
||
what `a` contracts with if any. -/
|
||
def consEquiv {a : 𝓕} {l : List 𝓕} :
|
||
Contractions (a :: l) ≃ (c : Contractions l) × Option (Fin (c.normalize).length) where
|
||
toFun c :=
|
||
match c with
|
||
| ⟨aux, c⟩ =>
|
||
match c with
|
||
| ContractionsAux.cons (aux := aux') i c => ⟨⟨aux', c⟩, i⟩
|
||
invFun ci :=
|
||
⟨(optionEraseZ (ci.fst.normalize) a ci.2), ContractionsAux.cons (a := a) ci.2 ci.1.2⟩
|
||
left_inv c := by
|
||
match c with
|
||
| ⟨aux, c⟩ =>
|
||
match c with
|
||
| ContractionsAux.cons (aux := aux') i c => rfl
|
||
right_inv ci := by rfl
|
||
|
||
/-- The type of contractions is decidable. -/
|
||
instance decidable : (l : List 𝓕) → DecidableEq (Contractions l)
|
||
| [] => fun a b =>
|
||
match a, b with
|
||
| ⟨_, a⟩, ⟨_, b⟩ =>
|
||
match a, b with
|
||
| ContractionsAux.nil, ContractionsAux.nil => isTrue rfl
|
||
| _ :: l =>
|
||
haveI : DecidableEq (Contractions l) := decidable l
|
||
haveI : DecidableEq ((c : Contractions l) × Option (Fin (c.normalize).length)) :=
|
||
Sigma.instDecidableEqSigma
|
||
Equiv.decidableEq consEquiv
|
||
|
||
/-- The type of contractions is finite. -/
|
||
instance fintype : (l : List 𝓕) → Fintype (Contractions l)
|
||
| [] => {
|
||
elems := {⟨[], ContractionsAux.nil⟩}
|
||
complete := by
|
||
intro a
|
||
rw [Finset.mem_singleton]
|
||
exact contractions_nil a}
|
||
| a :: l =>
|
||
haveI : Fintype (Contractions l) := fintype l
|
||
haveI : Fintype ((c : Contractions l) × Option (Fin (c.normalize).length)) :=
|
||
Sigma.instFintype
|
||
Fintype.ofEquiv _ consEquiv.symm
|
||
|
||
/-- A structure specifying when a type `I` and a map `f :I → Type` corresponds to
|
||
the splitting of a fields `φ` into a creation `n` and annihlation part `p`. -/
|
||
structure Splitting (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1] where
|
||
/-- The creation part of the fields. The label `n` corresponds to the fact that
|
||
in normal ordering these feilds get pushed to the negative (left) direction. -/
|
||
𝓑n : 𝓕 → (Σ i, f i)
|
||
/-- The annhilation part of the fields. The label `p` corresponds to the fact that
|
||
in normal ordering these feilds get pushed to the positive (right) direction. -/
|
||
𝓑p : 𝓕 → (Σ i, f i)
|
||
/-- The complex coefficent of creation part of a field `i`. This is usually `0` or `1`. -/
|
||
𝓧n : 𝓕 → ℂ
|
||
/-- The complex coefficent of annhilation part of a field `i`. This is usually `0` or `1`. -/
|
||
𝓧p : 𝓕 → ℂ
|
||
h𝓑 : ∀ i, ofListLift f [i] 1 = ofList [𝓑n i] (𝓧n i) + ofList [𝓑p i] (𝓧p i)
|
||
h𝓑n : ∀ i j, le1 (𝓑n i) j
|
||
h𝓑p : ∀ i j, le1 j (𝓑p i)
|
||
|
||
/-- In the static wick's theorem, the term associated with a contraction `c` containing
|
||
the contractions. -/
|
||
noncomputable def toCenterTerm (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
||
(q : 𝓕 → FieldStatistic)
|
||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ[ℂ] A) :
|
||
{r : List 𝓕} → (c : Contractions r) → (S : Splitting f le1) → A
|
||
| [], ⟨[], .nil⟩, _ => 1
|
||
| _ :: _, ⟨_, .cons (aux := aux') none c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S
|
||
| a :: _, ⟨_, .cons (aux := aux') (some n) c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S *
|
||
superCommuteCoef q [aux'.get n] (List.take (↑n) aux') •
|
||
F (((superCommute fun i => q i.fst) (ofList [S.𝓑p a] (S.𝓧p a))) (ofListLift f [aux'.get n] 1))
|
||
|
||
lemma toCenterTerm_none (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
||
(q : 𝓕 → FieldStatistic) {r : List 𝓕}
|
||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A)
|
||
(S : Splitting f le1) (a : 𝓕) (c : Contractions r) :
|
||
toCenterTerm (r := a :: r) f q le1 F (Contractions.consEquiv.symm ⟨c, none⟩) S =
|
||
toCenterTerm f q le1 F c S := by
|
||
rw [consEquiv]
|
||
simp only [Equiv.coe_fn_symm_mk]
|
||
dsimp [toCenterTerm]
|
||
rfl
|
||
|
||
lemma toCenterTerm_center (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
||
(q : 𝓕 → FieldStatistic)
|
||
(le : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le]
|
||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le F] :
|
||
{r : List 𝓕} → (c : Contractions r) → (S : Splitting f le) →
|
||
(c.toCenterTerm f q le F S) ∈ Subalgebra.center ℂ A
|
||
| [], ⟨[], .nil⟩, _ => by
|
||
dsimp [toCenterTerm]
|
||
exact Subalgebra.one_mem (Subalgebra.center ℂ A)
|
||
| _ :: _, ⟨_, .cons (aux := aux') none c⟩, S => by
|
||
dsimp [toCenterTerm]
|
||
exact toCenterTerm_center f q le F ⟨aux', c⟩ S
|
||
| a :: _, ⟨_, .cons (aux := aux') (some n) c⟩, S => by
|
||
dsimp [toCenterTerm]
|
||
refine Subalgebra.mul_mem (Subalgebra.center ℂ A) ?hx ?hy
|
||
exact toCenterTerm_center f q le F ⟨aux', c⟩ S
|
||
apply Subalgebra.smul_mem
|
||
rw [ofListLift_expand]
|
||
rw [map_sum, map_sum]
|
||
refine Subalgebra.sum_mem (Subalgebra.center ℂ A) ?hy.hx.h
|
||
intro x _
|
||
simp only [CreateAnnihilateSect.toList]
|
||
rw [ofList_singleton]
|
||
exact OperatorMap.superCommute_ofList_singleton_ι_center (q := fun i => q i.1)
|
||
(le := le) F (S.𝓑p a) ⟨aux'[↑n], x.head⟩
|
||
|
||
end Contractions
|
||
|
||
end Wick
|