PhysLean/HepLean/PerturbationTheory/WickContraction/Sign/Basic.lean
2025-02-03 10:47:18 +00:00

49 lines
1.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.InsertAndContract
/-!
# Sign associated with a contraction
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open FieldStatistic
/-- Given a Wick contraction `c : WickContraction n` and `i1 i2 : Fin n` the finite set
of elements of `Fin n` between `i1` and `i2` which are either uncontracted
or are contracted but are contracted with an element occuring after `i1`.
I.e. the elements of `Fin n` between `i1` and `i2` which are not contracted with before `i1`.
One should assume `i1 < i2` otherwise this finite set is empty. -/
def signFinset (c : WickContraction n) (i1 i2 : Fin n) : Finset (Fin n) :=
Finset.univ.filter (fun i => i1 < i ∧ i < i2 ∧
(c.getDual? i = none ∀ (h : (c.getDual? i).isSome), i1 < (c.getDual? i).get h))
/-- Given a Wick contraction `φsΛ` associated with a list of states `φs`
the sign associated with `φsΛ` is sign corresponding to the number
of fermionic-fermionic exchanges one must do to put elements in contracted pairs
of `φsΛ` next to each other. -/
def sign (φs : List 𝓕.States) (φsΛ : WickContraction φs.length) : :=
∏ (a : φsΛ.1), 𝓢(𝓕 |>ₛ φs[φsΛ.sndFieldOfContract a],
𝓕 |>ₛ ⟨φs.get, φsΛ.signFinset (φsΛ.fstFieldOfContract a) (φsΛ.sndFieldOfContract a)⟩)
lemma sign_empty (φs : List 𝓕.States) :
sign φs empty = 1 := by
rw [sign]
simp [empty]
lemma sign_congr {φs φs' : List 𝓕.States} (h : φs = φs') (φsΛ : WickContraction φs.length) :
sign φs' (congr (by simp [h]) φsΛ) = sign φs φsΛ := by
subst h
rfl
end WickContraction